利用轴向微鳍铝管中低全球升温潜能值制冷剂的数据,评估和开发流动冷凝相关性

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Yifeng Hu, Samuel Fortunato Yana Motta, Cheng-Min Yang
{"title":"利用轴向微鳍铝管中低全球升温潜能值制冷剂的数据,评估和开发流动冷凝相关性","authors":"Yifeng Hu,&nbsp;Samuel Fortunato Yana Motta,&nbsp;Cheng-Min Yang","doi":"10.1016/j.ijrefrig.2024.09.016","DOIUrl":null,"url":null,"abstract":"<div><div>To mitigate global warming, the world is transitioning to refrigerants with low global warming potential (GWP). Supporting this shift requires a model that can accurately predict the heat transfer and pressure drop of new refrigerants, crucial for designing efficient heat exchangers. Existing models, however, are largely based on currently deployed refrigerants and primarily developed for unexpanded micro-fin tubes with spiral angles of 6° to 30°. Their applicability to new refrigerants, especially in expanded micro-fin tubes, is uncertain. This study assesses the performance of four well-known condensation models for six emerging refrigerants—R-32, R-454B, R-454C, R-455A, R-1234yf, and R-1234ze(E)—against experimental data. Initially, the Han and Lee (2005) model shows the best prediction accuracy with a mean absolute deviation (MAD) of 22.1 %. To enhance the accuracy of heat transfer models for new refrigerants and geometries with large temperature glides, two approaches are proposed. The first approach applies a simple correction factor, reducing the MAD of the Cavallini et al. (2009) model from 68.2 % to 15.4 %. The second approach uses the variable metric method for minimization, fitting new constants to the data. This optimization results in the Kedzierski and Goncalves (1997) model achieving the highest accuracy, with a MAD of 13.1 %. For pressure drop models, the Cavallini et al. (1997) model is the most accurate with a MAD of 6.4 %, followed by the Haraguchi et al. (1993) model with a MAD of 9.4 %. Due to its simplicity, the Haraguchi et al. (1993) model is a practical option for predicting frictional pressure drop.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 454-468"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation and development of flow condensation correlations using the data from low GWP refrigerants in an axial micro-fin aluminum tube\",\"authors\":\"Yifeng Hu,&nbsp;Samuel Fortunato Yana Motta,&nbsp;Cheng-Min Yang\",\"doi\":\"10.1016/j.ijrefrig.2024.09.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To mitigate global warming, the world is transitioning to refrigerants with low global warming potential (GWP). Supporting this shift requires a model that can accurately predict the heat transfer and pressure drop of new refrigerants, crucial for designing efficient heat exchangers. Existing models, however, are largely based on currently deployed refrigerants and primarily developed for unexpanded micro-fin tubes with spiral angles of 6° to 30°. Their applicability to new refrigerants, especially in expanded micro-fin tubes, is uncertain. This study assesses the performance of four well-known condensation models for six emerging refrigerants—R-32, R-454B, R-454C, R-455A, R-1234yf, and R-1234ze(E)—against experimental data. Initially, the Han and Lee (2005) model shows the best prediction accuracy with a mean absolute deviation (MAD) of 22.1 %. To enhance the accuracy of heat transfer models for new refrigerants and geometries with large temperature glides, two approaches are proposed. The first approach applies a simple correction factor, reducing the MAD of the Cavallini et al. (2009) model from 68.2 % to 15.4 %. The second approach uses the variable metric method for minimization, fitting new constants to the data. This optimization results in the Kedzierski and Goncalves (1997) model achieving the highest accuracy, with a MAD of 13.1 %. For pressure drop models, the Cavallini et al. (1997) model is the most accurate with a MAD of 6.4 %, followed by the Haraguchi et al. (1993) model with a MAD of 9.4 %. Due to its simplicity, the Haraguchi et al. (1993) model is a practical option for predicting frictional pressure drop.</div></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":\"168 \",\"pages\":\"Pages 454-468\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724003281\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724003281","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

为了减缓全球变暖,全球正在向低全球升温潜能值(GWP)制冷剂过渡。要实现这一转变,需要一个能够准确预测新型制冷剂传热和压降的模型,这对设计高效热交换器至关重要。然而,现有模型主要基于目前使用的制冷剂,并且主要是针对螺旋角为 6° 至 30° 的未膨胀微鳍管开发的。这些模型是否适用于新型制冷剂,尤其是膨胀微鳍管,尚不确定。本研究针对六种新兴制冷剂--R-32、R-454B、R-454C、R-455A、R-1234yf 和 R-1234ze(E)--评估了四种著名冷凝模型的性能与实验数据。最初,Han 和 Lee(2005 年)模型的预测精度最高,平均绝对偏差 (MAD) 为 22.1%。为了提高新型制冷剂和具有较大温度滑移的几何形状的传热模型的准确性,提出了两种方法。第一种方法采用简单的修正系数,将 Cavallini 等人(2009 年)模型的平均绝对偏差从 68.2% 降至 15.4%。第二种方法使用可变度量法进行最小化,根据数据拟合新的常数。这种优化方法的结果是 Kedzierski 和 Goncalves(1997 年)模型的精度最高,MAD 为 13.1%。就压降模型而言,Cavallini 等人(1997 年)的模型精度最高,误差平均值为 6.4%,其次是 Haraguchi 等人(1993 年)的模型,误差平均值为 9.4%。由于其简单性,Haraguchi 等人(1993 年)模型是预测摩擦压降的实用选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Evaluation and development of flow condensation correlations using the data from low GWP refrigerants in an axial micro-fin aluminum tube
To mitigate global warming, the world is transitioning to refrigerants with low global warming potential (GWP). Supporting this shift requires a model that can accurately predict the heat transfer and pressure drop of new refrigerants, crucial for designing efficient heat exchangers. Existing models, however, are largely based on currently deployed refrigerants and primarily developed for unexpanded micro-fin tubes with spiral angles of 6° to 30°. Their applicability to new refrigerants, especially in expanded micro-fin tubes, is uncertain. This study assesses the performance of four well-known condensation models for six emerging refrigerants—R-32, R-454B, R-454C, R-455A, R-1234yf, and R-1234ze(E)—against experimental data. Initially, the Han and Lee (2005) model shows the best prediction accuracy with a mean absolute deviation (MAD) of 22.1 %. To enhance the accuracy of heat transfer models for new refrigerants and geometries with large temperature glides, two approaches are proposed. The first approach applies a simple correction factor, reducing the MAD of the Cavallini et al. (2009) model from 68.2 % to 15.4 %. The second approach uses the variable metric method for minimization, fitting new constants to the data. This optimization results in the Kedzierski and Goncalves (1997) model achieving the highest accuracy, with a MAD of 13.1 %. For pressure drop models, the Cavallini et al. (1997) model is the most accurate with a MAD of 6.4 %, followed by the Haraguchi et al. (1993) model with a MAD of 9.4 %. Due to its simplicity, the Haraguchi et al. (1993) model is a practical option for predicting frictional pressure drop.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信