Chang Guo , Ming Gao , Feiran Lv , Zhigang Liu , Ning Zhang
{"title":"研究通过螺旋毛细管的气液两相流的振动和噪声特性","authors":"Chang Guo , Ming Gao , Feiran Lv , Zhigang Liu , Ning Zhang","doi":"10.1016/j.ijrefrig.2024.10.003","DOIUrl":null,"url":null,"abstract":"<div><div>The vaporization of refrigerant in the liquid-phase in spiral capillary tube induces complex two-phase flow that causes vibrations and noise, which affect the performance and stability of refrigeration systems. Therefore, the flow patterns, vibrations, flow-borne and structure-borne noises in spiral capillary tube are explored, and the effects of coil diameters, pitches and temperatures are analyzed. The results showed that the flow upstream the vaporization point was dominant by liquid-phase, then changed to bubbly flow downstream the vaporization point under various structures, and further changed to mist flow near the outlet, while it changed to gas-phase flow near the outlet under high temperature. The flow-borne noise was mainly affected by the flow turbulence, and the total sound pressure level (TSPL) increased by 17.1 % on average as the temperature increased from 309.6 to 317.6 K, and rose with the increase in pitch. As the coil diameter increased, the TSPL first increased and then decreased. Moreover, the maximum deformation of structure increased by 58.33 % as the diameter increased from 35 to 50 mm, but changed little with various pitches. The changing trends of vibration intensity caused the similar variations of structure-borne noise. The TSPL of structure-borne noise increased by 9.14 % with the diameter increasing from 35 to 50 mm, but it changed little at various pitches. The TSPL of structure-borne noise was much higher than flow-borne noise, which meant that improving the structural vibration can control the noise of refrigerant flow in spiral capillary tube.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 566-579"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigating of vibration and noise characteristics in two-phase gas-liquid flow through a spiral capillary tube\",\"authors\":\"Chang Guo , Ming Gao , Feiran Lv , Zhigang Liu , Ning Zhang\",\"doi\":\"10.1016/j.ijrefrig.2024.10.003\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The vaporization of refrigerant in the liquid-phase in spiral capillary tube induces complex two-phase flow that causes vibrations and noise, which affect the performance and stability of refrigeration systems. Therefore, the flow patterns, vibrations, flow-borne and structure-borne noises in spiral capillary tube are explored, and the effects of coil diameters, pitches and temperatures are analyzed. The results showed that the flow upstream the vaporization point was dominant by liquid-phase, then changed to bubbly flow downstream the vaporization point under various structures, and further changed to mist flow near the outlet, while it changed to gas-phase flow near the outlet under high temperature. The flow-borne noise was mainly affected by the flow turbulence, and the total sound pressure level (TSPL) increased by 17.1 % on average as the temperature increased from 309.6 to 317.6 K, and rose with the increase in pitch. As the coil diameter increased, the TSPL first increased and then decreased. Moreover, the maximum deformation of structure increased by 58.33 % as the diameter increased from 35 to 50 mm, but changed little with various pitches. The changing trends of vibration intensity caused the similar variations of structure-borne noise. The TSPL of structure-borne noise increased by 9.14 % with the diameter increasing from 35 to 50 mm, but it changed little at various pitches. The TSPL of structure-borne noise was much higher than flow-borne noise, which meant that improving the structural vibration can control the noise of refrigerant flow in spiral capillary tube.</div></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":\"168 \",\"pages\":\"Pages 566-579\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724003426\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724003426","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
制冷剂在螺旋毛细管中的液相汽化会引起复杂的两相流动,从而产生振动和噪音,影响制冷系统的性能和稳定性。因此,本文探讨了螺旋毛细管中的流动模式、振动、流动噪声和结构噪声,并分析了盘管直径、间距和温度的影响。结果表明,在各种结构下,汽化点上游的流动以液相流动为主,然后转变为汽化点下游的气泡流动,并在出口附近进一步转变为雾状流动,而在高温下则在出口附近转变为气相流动。流动噪声主要受流动湍流的影响,当温度从 309.6 K 上升到 317.6 K 时,总声压级(TSPL)平均上升了 17.1%,并随着螺距的增加而上升。随着线圈直径的增大,总声压级先增大后减小。此外,当直径从 35 毫米增加到 50 毫米时,结构的最大变形增加了 58.33%,但在不同节距下变化不大。振动强度的变化趋势导致了结构噪声的类似变化。当直径从 35 毫米增加到 50 毫米时,结构传播噪声的总声压级(TSPL)增加了 9.14%,但在不同间距下变化不大。结构传播噪音的 TSPL 远高于流动传播噪音,这意味着改善结构振动可以控制螺旋毛细管中的制冷剂流动噪音。
Investigating of vibration and noise characteristics in two-phase gas-liquid flow through a spiral capillary tube
The vaporization of refrigerant in the liquid-phase in spiral capillary tube induces complex two-phase flow that causes vibrations and noise, which affect the performance and stability of refrigeration systems. Therefore, the flow patterns, vibrations, flow-borne and structure-borne noises in spiral capillary tube are explored, and the effects of coil diameters, pitches and temperatures are analyzed. The results showed that the flow upstream the vaporization point was dominant by liquid-phase, then changed to bubbly flow downstream the vaporization point under various structures, and further changed to mist flow near the outlet, while it changed to gas-phase flow near the outlet under high temperature. The flow-borne noise was mainly affected by the flow turbulence, and the total sound pressure level (TSPL) increased by 17.1 % on average as the temperature increased from 309.6 to 317.6 K, and rose with the increase in pitch. As the coil diameter increased, the TSPL first increased and then decreased. Moreover, the maximum deformation of structure increased by 58.33 % as the diameter increased from 35 to 50 mm, but changed little with various pitches. The changing trends of vibration intensity caused the similar variations of structure-borne noise. The TSPL of structure-borne noise increased by 9.14 % with the diameter increasing from 35 to 50 mm, but it changed little at various pitches. The TSPL of structure-borne noise was much higher than flow-borne noise, which meant that improving the structural vibration can control the noise of refrigerant flow in spiral capillary tube.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.