不规则纤维填充对用于冷水生产的中空纤维膜组件性能的影响

IF 3.5 2区 工程技术 Q1 ENGINEERING, MECHANICAL
Weichao Yan, Chuanjun Yang, Yu Zhang, Yahui Liu, Yilin Liu, Xin Cui, Xiangzhao Meng, Liwen Jin
{"title":"不规则纤维填充对用于冷水生产的中空纤维膜组件性能的影响","authors":"Weichao Yan,&nbsp;Chuanjun Yang,&nbsp;Yu Zhang,&nbsp;Yahui Liu,&nbsp;Yilin Liu,&nbsp;Xin Cui,&nbsp;Xiangzhao Meng,&nbsp;Liwen Jin","doi":"10.1016/j.ijrefrig.2024.09.029","DOIUrl":null,"url":null,"abstract":"<div><div>The countercurrent hollow fiber membrane-based evaporative water cooler (MEWC) offers an eco-friendly and compact solution for cold water generation. This study introduces a random sequential addition algorithm to model the real-world irregular fiber filling within the MEWC. Inspired by the honeycomb structure, the developed 3-D numerical model adopts a calculation unit featuring a hexagonal prism comprising multiple fibers. Validation against experimental data reveals an average relative error of 2.81 % concerning outlet water temperature. The effects of fiber filling patterns (regular layout and random layout) on the velocity and temperature fields of the MEWC are investigated. Comparisons of outlet water temperature, cooling efficiency, consumptive electric power ratio, and heat and mass transfer resistance composition between these layouts under various operating conditions are conducted. The results indicate that the random layout fosters severe channeling effect and large flow dead zones, impairing air side heat and moisture transfer. The random layout exhibits over 15.9 % reduction in cooling efficiency and 36.3 % decrease in consumptive electric power ratio compared to the regular layout. Irregular fiber filling leads to a notable 158.6 % increase in air side heat transfer resistance and a 35.9 % rise in mass transfer resistance. Although irregular filling compromises the cooling performance, it demonstrates potential for energy savings under certain conditions. Design schemes should be carefully tailored to meet specific application requirements by considering these trade-offs.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 552-565"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of irregular fiber filling on the performance of hollow fiber membrane modules for cold water production\",\"authors\":\"Weichao Yan,&nbsp;Chuanjun Yang,&nbsp;Yu Zhang,&nbsp;Yahui Liu,&nbsp;Yilin Liu,&nbsp;Xin Cui,&nbsp;Xiangzhao Meng,&nbsp;Liwen Jin\",\"doi\":\"10.1016/j.ijrefrig.2024.09.029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The countercurrent hollow fiber membrane-based evaporative water cooler (MEWC) offers an eco-friendly and compact solution for cold water generation. This study introduces a random sequential addition algorithm to model the real-world irregular fiber filling within the MEWC. Inspired by the honeycomb structure, the developed 3-D numerical model adopts a calculation unit featuring a hexagonal prism comprising multiple fibers. Validation against experimental data reveals an average relative error of 2.81 % concerning outlet water temperature. The effects of fiber filling patterns (regular layout and random layout) on the velocity and temperature fields of the MEWC are investigated. Comparisons of outlet water temperature, cooling efficiency, consumptive electric power ratio, and heat and mass transfer resistance composition between these layouts under various operating conditions are conducted. The results indicate that the random layout fosters severe channeling effect and large flow dead zones, impairing air side heat and moisture transfer. The random layout exhibits over 15.9 % reduction in cooling efficiency and 36.3 % decrease in consumptive electric power ratio compared to the regular layout. Irregular fiber filling leads to a notable 158.6 % increase in air side heat transfer resistance and a 35.9 % rise in mass transfer resistance. Although irregular filling compromises the cooling performance, it demonstrates potential for energy savings under certain conditions. Design schemes should be carefully tailored to meet specific application requirements by considering these trade-offs.</div></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":\"168 \",\"pages\":\"Pages 552-565\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724003414\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724003414","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

基于逆流中空纤维膜的蒸发式水冷却器(MEWC)为冷水生产提供了一种环保、紧凑的解决方案。本研究引入了一种随机顺序添加算法,以模拟真实世界中 MEWC 内的不规则纤维填充。受蜂巢结构的启发,所开发的三维数值模型采用了一个由多根纤维组成的六角棱柱为特征的计算单元。根据实验数据进行验证后发现,出口水温的平均相对误差为 2.81%。研究了纤维填充模式(规则布局和随机布局)对 MEWC 的速度场和温度场的影响。比较了这些布局在不同运行条件下的出水温度、冷却效率、消耗功率比以及传热和传质阻力组成。结果表明,随机布局会产生严重的通道效应和较大的流动死区,影响空气侧的热量和水分传递。与常规布局相比,随机布局的冷却效率降低了 15.9%,消耗功率比降低了 36.3%。不规则纤维填充导致空气侧传热阻力显著增加 158.6%,传质阻力增加 35.9%。虽然不规则填充会影响冷却性能,但在某些条件下却具有节能潜力。应通过考虑这些权衡因素,精心定制设计方案,以满足特定的应用要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Influence of irregular fiber filling on the performance of hollow fiber membrane modules for cold water production
The countercurrent hollow fiber membrane-based evaporative water cooler (MEWC) offers an eco-friendly and compact solution for cold water generation. This study introduces a random sequential addition algorithm to model the real-world irregular fiber filling within the MEWC. Inspired by the honeycomb structure, the developed 3-D numerical model adopts a calculation unit featuring a hexagonal prism comprising multiple fibers. Validation against experimental data reveals an average relative error of 2.81 % concerning outlet water temperature. The effects of fiber filling patterns (regular layout and random layout) on the velocity and temperature fields of the MEWC are investigated. Comparisons of outlet water temperature, cooling efficiency, consumptive electric power ratio, and heat and mass transfer resistance composition between these layouts under various operating conditions are conducted. The results indicate that the random layout fosters severe channeling effect and large flow dead zones, impairing air side heat and moisture transfer. The random layout exhibits over 15.9 % reduction in cooling efficiency and 36.3 % decrease in consumptive electric power ratio compared to the regular layout. Irregular fiber filling leads to a notable 158.6 % increase in air side heat transfer resistance and a 35.9 % rise in mass transfer resistance. Although irregular filling compromises the cooling performance, it demonstrates potential for energy savings under certain conditions. Design schemes should be carefully tailored to meet specific application requirements by considering these trade-offs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
12.80%
发文量
363
审稿时长
3.7 months
期刊介绍: The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling. As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews. Papers are published in either English or French with the IIR news section in both languages.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信