由 Black-Karasinski 过程驱动的随机吸烟流行病模型的全局动力学

IF 2.9 2区 数学 Q1 MATHEMATICS, APPLIED
Bingtao Han, Daqing Jiang
{"title":"由 Black-Karasinski 过程驱动的随机吸烟流行病模型的全局动力学","authors":"Bingtao Han,&nbsp;Daqing Jiang","doi":"10.1016/j.aml.2024.109324","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we develop a stochastic smoking epidemic model, where Black-Karasinski process is for the first time introduced to describe the environmental fluctuations in smoking transmission. By constructing suitable Lyapunov functions and compact sets, we establish sufficient conditions for the exponential extinction of smoking populations and the existence of a stationary distribution (i.e., a reflection of smoking persistence). Our results show that stochastic noise will be conducive to smoking pandemic.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109324"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global dynamics of a stochastic smoking epidemic model driven by Black-Karasinski process\",\"authors\":\"Bingtao Han,&nbsp;Daqing Jiang\",\"doi\":\"10.1016/j.aml.2024.109324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we develop a stochastic smoking epidemic model, where Black-Karasinski process is for the first time introduced to describe the environmental fluctuations in smoking transmission. By constructing suitable Lyapunov functions and compact sets, we establish sufficient conditions for the exponential extinction of smoking populations and the existence of a stationary distribution (i.e., a reflection of smoking persistence). Our results show that stochastic noise will be conducive to smoking pandemic.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"160 \",\"pages\":\"Article 109324\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003446\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003446","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文建立了一个随机吸烟流行模型,首次引入 Black-Karasinski 过程来描述吸烟传播的环境波动。通过构建合适的 Lyapunov 函数和紧凑集,我们建立了吸烟种群指数消亡和静态分布(即吸烟持续性的反映)存在的充分条件。我们的结果表明,随机噪声将有利于吸烟的大流行。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global dynamics of a stochastic smoking epidemic model driven by Black-Karasinski process
In this paper, we develop a stochastic smoking epidemic model, where Black-Karasinski process is for the first time introduced to describe the environmental fluctuations in smoking transmission. By constructing suitable Lyapunov functions and compact sets, we establish sufficient conditions for the exponential extinction of smoking populations and the existence of a stationary distribution (i.e., a reflection of smoking persistence). Our results show that stochastic noise will be conducive to smoking pandemic.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Mathematics Letters
Applied Mathematics Letters 数学-应用数学
CiteScore
7.70
自引率
5.40%
发文量
347
审稿时长
10 days
期刊介绍: The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信