Chenbing Yang , Liping Pang , Yuandong Guo, Desheng Ma
{"title":"高压下矩形微通道中氨沸腾传热的数值研究","authors":"Chenbing Yang , Liping Pang , Yuandong Guo, Desheng Ma","doi":"10.1016/j.ijrefrig.2024.09.025","DOIUrl":null,"url":null,"abstract":"<div><div>Ammonia boilers are commonly used as expendable radiators during the return phase of spacecraft. The aim of this study is to investigate the bubble behavior and heat transfer characteristics within a vertical rectangular microchannel of a plate-fin ammonia boiler under gravity at an absolute pressure of 354–615 kPa. In order to achieve this, a single rectangular microchannel unit was intercepted from the ammonia boiler structure to construct a simulation model, and the high-pressure boiling process of ammonia in the rectangular microchannel was numerically investigated using the VOF model. Good agreement was obtained by comparing the numerical results with the experimental data with the error within 8 %. The results show that the wake flow at the lower end of the primary bubbles has an enhanced effect on the heat transfer, which is about 50–60 %. The maximum horizontal dimension of primary bubbles increases with increasing superheat, and significant bubble coalescence occurs when 45 % of the rectangular microchannel spacing is exceeded. In addition, the effect of different saturation temperatures on the heat transfer performance on the hot high temperature wall was investigated. Significant heat transfer deterioration was found to occur at saturation temperatures below 4 °C (superheat above 15 °C). The reason found in this study was that bubble coalescence significantly increases the percentage of gas-phase contact area on the high-temperature wall (from 25 % to 54 %) and weakens the wake enhancement effect.</div></div>","PeriodicalId":14274,"journal":{"name":"International Journal of Refrigeration-revue Internationale Du Froid","volume":"168 ","pages":"Pages 607-619"},"PeriodicalIF":3.5000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical investigation of ammonia boiling heat transfer in rectangular microchannel under high pressure\",\"authors\":\"Chenbing Yang , Liping Pang , Yuandong Guo, Desheng Ma\",\"doi\":\"10.1016/j.ijrefrig.2024.09.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Ammonia boilers are commonly used as expendable radiators during the return phase of spacecraft. The aim of this study is to investigate the bubble behavior and heat transfer characteristics within a vertical rectangular microchannel of a plate-fin ammonia boiler under gravity at an absolute pressure of 354–615 kPa. In order to achieve this, a single rectangular microchannel unit was intercepted from the ammonia boiler structure to construct a simulation model, and the high-pressure boiling process of ammonia in the rectangular microchannel was numerically investigated using the VOF model. Good agreement was obtained by comparing the numerical results with the experimental data with the error within 8 %. The results show that the wake flow at the lower end of the primary bubbles has an enhanced effect on the heat transfer, which is about 50–60 %. The maximum horizontal dimension of primary bubbles increases with increasing superheat, and significant bubble coalescence occurs when 45 % of the rectangular microchannel spacing is exceeded. In addition, the effect of different saturation temperatures on the heat transfer performance on the hot high temperature wall was investigated. Significant heat transfer deterioration was found to occur at saturation temperatures below 4 °C (superheat above 15 °C). The reason found in this study was that bubble coalescence significantly increases the percentage of gas-phase contact area on the high-temperature wall (from 25 % to 54 %) and weakens the wake enhancement effect.</div></div>\",\"PeriodicalId\":14274,\"journal\":{\"name\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"volume\":\"168 \",\"pages\":\"Pages 607-619\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Refrigeration-revue Internationale Du Froid\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0140700724003372\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Refrigeration-revue Internationale Du Froid","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0140700724003372","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Numerical investigation of ammonia boiling heat transfer in rectangular microchannel under high pressure
Ammonia boilers are commonly used as expendable radiators during the return phase of spacecraft. The aim of this study is to investigate the bubble behavior and heat transfer characteristics within a vertical rectangular microchannel of a plate-fin ammonia boiler under gravity at an absolute pressure of 354–615 kPa. In order to achieve this, a single rectangular microchannel unit was intercepted from the ammonia boiler structure to construct a simulation model, and the high-pressure boiling process of ammonia in the rectangular microchannel was numerically investigated using the VOF model. Good agreement was obtained by comparing the numerical results with the experimental data with the error within 8 %. The results show that the wake flow at the lower end of the primary bubbles has an enhanced effect on the heat transfer, which is about 50–60 %. The maximum horizontal dimension of primary bubbles increases with increasing superheat, and significant bubble coalescence occurs when 45 % of the rectangular microchannel spacing is exceeded. In addition, the effect of different saturation temperatures on the heat transfer performance on the hot high temperature wall was investigated. Significant heat transfer deterioration was found to occur at saturation temperatures below 4 °C (superheat above 15 °C). The reason found in this study was that bubble coalescence significantly increases the percentage of gas-phase contact area on the high-temperature wall (from 25 % to 54 %) and weakens the wake enhancement effect.
期刊介绍:
The International Journal of Refrigeration is published for the International Institute of Refrigeration (IIR) by Elsevier. It is essential reading for all those wishing to keep abreast of research and industrial news in refrigeration, air conditioning and associated fields. This is particularly important in these times of rapid introduction of alternative refrigerants and the emergence of new technology. The journal has published special issues on alternative refrigerants and novel topics in the field of boiling, condensation, heat pumps, food refrigeration, carbon dioxide, ammonia, hydrocarbons, magnetic refrigeration at room temperature, sorptive cooling, phase change materials and slurries, ejector technology, compressors, and solar cooling.
As well as original research papers the International Journal of Refrigeration also includes review articles, papers presented at IIR conferences, short reports and letters describing preliminary results and experimental details, and letters to the Editor on recent areas of discussion and controversy. Other features include forthcoming events, conference reports and book reviews.
Papers are published in either English or French with the IIR news section in both languages.