{"title":"涉及哈代项的退化 p-拉普拉斯椭圆方程的分析:解的存在性和数","authors":"Jian Liu, Qiguang An","doi":"10.1016/j.aml.2024.109330","DOIUrl":null,"url":null,"abstract":"<div><div>This article investigates the existence of solutions to quasilinear degenerate elliptic equation with Hardy singular coefficient, in which the weighted function <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is unbounded (singular), then we cannot use the classical space <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>, so we have to find another space <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> to deal with the difficulties caused by singularities or degeneracies. New criteria for the existence of at least one and at least two generalized solutions are established via variational methods and critical point theorems provided that the nonlinearity satisfies appropriate hypotheses.</div></div>","PeriodicalId":55497,"journal":{"name":"Applied Mathematics Letters","volume":"160 ","pages":"Article 109330"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of degenerate p-Laplacian elliptic equations involving Hardy terms: Existence and numbers of solutions\",\"authors\":\"Jian Liu, Qiguang An\",\"doi\":\"10.1016/j.aml.2024.109330\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This article investigates the existence of solutions to quasilinear degenerate elliptic equation with Hardy singular coefficient, in which the weighted function <span><math><mrow><mi>ω</mi><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow></mrow></math></span> is unbounded (singular), then we cannot use the classical space <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span>, so we have to find another space <span><math><mrow><msubsup><mrow><mi>W</mi></mrow><mrow><mn>0</mn></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msubsup><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mi>Ω</mi><mo>)</mo></mrow></mrow></math></span> to deal with the difficulties caused by singularities or degeneracies. New criteria for the existence of at least one and at least two generalized solutions are established via variational methods and critical point theorems provided that the nonlinearity satisfies appropriate hypotheses.</div></div>\",\"PeriodicalId\":55497,\"journal\":{\"name\":\"Applied Mathematics Letters\",\"volume\":\"160 \",\"pages\":\"Article 109330\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Mathematics Letters\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893965924003501\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematics Letters","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893965924003501","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Analysis of degenerate p-Laplacian elliptic equations involving Hardy terms: Existence and numbers of solutions
This article investigates the existence of solutions to quasilinear degenerate elliptic equation with Hardy singular coefficient, in which the weighted function is unbounded (singular), then we cannot use the classical space , so we have to find another space to deal with the difficulties caused by singularities or degeneracies. New criteria for the existence of at least one and at least two generalized solutions are established via variational methods and critical point theorems provided that the nonlinearity satisfies appropriate hypotheses.
期刊介绍:
The purpose of Applied Mathematics Letters is to provide a means of rapid publication for important but brief applied mathematical papers. The brief descriptions of any work involving a novel application or utilization of mathematics, or a development in the methodology of applied mathematics is a potential contribution for this journal. This journal''s focus is on applied mathematics topics based on differential equations and linear algebra. Priority will be given to submissions that are likely to appeal to a wide audience.