思想的连锁反应:放射性衰变能否预测技术创新?

IF 2.8 3区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
G.S.Y. Giardini, C.R. da Cunha
{"title":"思想的连锁反应:放射性衰变能否预测技术创新?","authors":"G.S.Y. Giardini,&nbsp;C.R. da Cunha","doi":"10.1016/j.physa.2024.130132","DOIUrl":null,"url":null,"abstract":"<div><div>This work demonstrates the application of a birth–death Markov process, inspired by radioactive decay, to capture the dynamics of innovation processes. Leveraging the Bass diffusion model, we derive a Gompertz-like function explaining long-term innovation trends. The validity of our model is confirmed using citation data, Google trends, and a recurrent neural network, which also reveals short-term fluctuations. Further analysis through an automaton model suggests these fluctuations can arise from the inherent stochastic nature of the underlying physics.</div></div>","PeriodicalId":20152,"journal":{"name":"Physica A: Statistical Mechanics and its Applications","volume":"654 ","pages":"Article 130132"},"PeriodicalIF":2.8000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chain reaction of ideas: Can radioactive decay predict technological innovation?\",\"authors\":\"G.S.Y. Giardini,&nbsp;C.R. da Cunha\",\"doi\":\"10.1016/j.physa.2024.130132\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This work demonstrates the application of a birth–death Markov process, inspired by radioactive decay, to capture the dynamics of innovation processes. Leveraging the Bass diffusion model, we derive a Gompertz-like function explaining long-term innovation trends. The validity of our model is confirmed using citation data, Google trends, and a recurrent neural network, which also reveals short-term fluctuations. Further analysis through an automaton model suggests these fluctuations can arise from the inherent stochastic nature of the underlying physics.</div></div>\",\"PeriodicalId\":20152,\"journal\":{\"name\":\"Physica A: Statistical Mechanics and its Applications\",\"volume\":\"654 \",\"pages\":\"Article 130132\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physica A: Statistical Mechanics and its Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378437124006411\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physica A: Statistical Mechanics and its Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378437124006411","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

这项工作展示了受放射性衰变启发的出生-死亡马尔可夫过程在捕捉创新过程动态方面的应用。利用巴斯扩散模型,我们推导出了一个解释长期创新趋势的类似冈培兹的函数。我们利用引文数据、谷歌趋势和递归神经网络证实了模型的有效性,并揭示了短期波动。通过自动机模型的进一步分析表明,这些波动可能源于底层物理的固有随机性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Chain reaction of ideas: Can radioactive decay predict technological innovation?
This work demonstrates the application of a birth–death Markov process, inspired by radioactive decay, to capture the dynamics of innovation processes. Leveraging the Bass diffusion model, we derive a Gompertz-like function explaining long-term innovation trends. The validity of our model is confirmed using citation data, Google trends, and a recurrent neural network, which also reveals short-term fluctuations. Further analysis through an automaton model suggests these fluctuations can arise from the inherent stochastic nature of the underlying physics.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.20
自引率
9.10%
发文量
852
审稿时长
6.6 months
期刊介绍: Physica A: Statistical Mechanics and its Applications Recognized by the European Physical Society Physica A publishes research in the field of statistical mechanics and its applications. Statistical mechanics sets out to explain the behaviour of macroscopic systems by studying the statistical properties of their microscopic constituents. Applications of the techniques of statistical mechanics are widespread, and include: applications to physical systems such as solids, liquids and gases; applications to chemical and biological systems (colloids, interfaces, complex fluids, polymers and biopolymers, cell physics); and other interdisciplinary applications to for instance biological, economical and sociological systems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信