Qian Chen , Jianping Qian , Huibin Li , Xintao Lin , Jiali Li , Zihan Liu , Zhiyao Zhao
{"title":"考虑成熟度窗口和能耗的气候性水果冷藏动态多目标时间-温度管理","authors":"Qian Chen , Jianping Qian , Huibin Li , Xintao Lin , Jiali Li , Zihan Liu , Zhiyao Zhao","doi":"10.1016/j.jfoodeng.2024.112350","DOIUrl":null,"url":null,"abstract":"<div><div>Cold chain logistics (CCL) can effectively maintain the quality and safety of perishable products through low-temperature circulation, but extra energy is densely used at the cost of economy and emissions. The multi-objective trade-off is critical for promoting sustainable time-temperature management (TTM) in CCL. For climacteric fruit in cold storage, the post-harvest ripening process should be controlled by TTM to meet various ripeness requirements of retailers with different distribution distances, market conditions. Meanwhile, randomly appeared order demands will dynamically influence complex sustainable decision-making of temperature-controlled path. Therefore, this paper aims to solve the dynamic multi-objective TTM optimization problem considering ripeness windows and energy consumption, for achieving online sustainable temperature control of climacteric fruit cold storage. Constructing 3D service window involving ripeness, outbound time, and cargo volume, then the multi-retailer satisfaction is designed as a significant optimization objective. Additionally, to improve operational efficiency and reduce environmental impact, energy consumption needs to be minimized under reasonable constraints. Following above objective strategy, a dynamic multi-objective TTM model is proposed with two-stage: 1) improved NSGA-II-based global optimization to find optimal temperature-controlled path for fixed retailers in real-time; 2) new stochastic retailer comes up after demand matching, if accepting order, an update optimization will be triggered. A numerical study was implemented to verify proposed method, with robustness value of 0.82–1. Compared with constant low-temperature storage, the optimized comprehensive loss is the smallest at 3.374. The results indicate that the hybrid-retailer demand-driven multi-criteria decision support is effective and robust for sustainable TTM of climacteric fruit cold chain.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"387 ","pages":"Article 112350"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Dynamic multi-objective time-temperature management for climacteric fruit cold storage considering ripeness windows and energy consumption\",\"authors\":\"Qian Chen , Jianping Qian , Huibin Li , Xintao Lin , Jiali Li , Zihan Liu , Zhiyao Zhao\",\"doi\":\"10.1016/j.jfoodeng.2024.112350\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cold chain logistics (CCL) can effectively maintain the quality and safety of perishable products through low-temperature circulation, but extra energy is densely used at the cost of economy and emissions. The multi-objective trade-off is critical for promoting sustainable time-temperature management (TTM) in CCL. For climacteric fruit in cold storage, the post-harvest ripening process should be controlled by TTM to meet various ripeness requirements of retailers with different distribution distances, market conditions. Meanwhile, randomly appeared order demands will dynamically influence complex sustainable decision-making of temperature-controlled path. Therefore, this paper aims to solve the dynamic multi-objective TTM optimization problem considering ripeness windows and energy consumption, for achieving online sustainable temperature control of climacteric fruit cold storage. Constructing 3D service window involving ripeness, outbound time, and cargo volume, then the multi-retailer satisfaction is designed as a significant optimization objective. Additionally, to improve operational efficiency and reduce environmental impact, energy consumption needs to be minimized under reasonable constraints. Following above objective strategy, a dynamic multi-objective TTM model is proposed with two-stage: 1) improved NSGA-II-based global optimization to find optimal temperature-controlled path for fixed retailers in real-time; 2) new stochastic retailer comes up after demand matching, if accepting order, an update optimization will be triggered. A numerical study was implemented to verify proposed method, with robustness value of 0.82–1. Compared with constant low-temperature storage, the optimized comprehensive loss is the smallest at 3.374. The results indicate that the hybrid-retailer demand-driven multi-criteria decision support is effective and robust for sustainable TTM of climacteric fruit cold chain.</div></div>\",\"PeriodicalId\":359,\"journal\":{\"name\":\"Journal of Food Engineering\",\"volume\":\"387 \",\"pages\":\"Article 112350\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0260877424004163\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877424004163","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Dynamic multi-objective time-temperature management for climacteric fruit cold storage considering ripeness windows and energy consumption
Cold chain logistics (CCL) can effectively maintain the quality and safety of perishable products through low-temperature circulation, but extra energy is densely used at the cost of economy and emissions. The multi-objective trade-off is critical for promoting sustainable time-temperature management (TTM) in CCL. For climacteric fruit in cold storage, the post-harvest ripening process should be controlled by TTM to meet various ripeness requirements of retailers with different distribution distances, market conditions. Meanwhile, randomly appeared order demands will dynamically influence complex sustainable decision-making of temperature-controlled path. Therefore, this paper aims to solve the dynamic multi-objective TTM optimization problem considering ripeness windows and energy consumption, for achieving online sustainable temperature control of climacteric fruit cold storage. Constructing 3D service window involving ripeness, outbound time, and cargo volume, then the multi-retailer satisfaction is designed as a significant optimization objective. Additionally, to improve operational efficiency and reduce environmental impact, energy consumption needs to be minimized under reasonable constraints. Following above objective strategy, a dynamic multi-objective TTM model is proposed with two-stage: 1) improved NSGA-II-based global optimization to find optimal temperature-controlled path for fixed retailers in real-time; 2) new stochastic retailer comes up after demand matching, if accepting order, an update optimization will be triggered. A numerical study was implemented to verify proposed method, with robustness value of 0.82–1. Compared with constant low-temperature storage, the optimized comprehensive loss is the smallest at 3.374. The results indicate that the hybrid-retailer demand-driven multi-criteria decision support is effective and robust for sustainable TTM of climacteric fruit cold chain.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.