Sumaiya Sadika Tuly , Mohammad U.H. Joardder , Zachary G. Welsh , Azharul Karim
{"title":"结合固体基质流动性和粘弹性预测植物性食品收缩动力学的新型机理模型","authors":"Sumaiya Sadika Tuly , Mohammad U.H. Joardder , Zachary G. Welsh , Azharul Karim","doi":"10.1016/j.jfoodeng.2024.112346","DOIUrl":null,"url":null,"abstract":"<div><div>Deformation during drying is a major physical change influencing drying kinetics and final product quality. Therefore, accurate prediction of shrinkage kinetics is essential for determining the optimal drying conditions for these foods. Shrinkage kinetics is greatly influenced by their structural mobility (rubbery-glassy transition) and viscoelastic properties. The current deformation models lack a comprehensive integration of structural mobility and viscoelasticity concepts, resulting in limitation in attaining insights on physiochemical state variations and viscoelastic stresses developed during drying. In order to overcome this limitation, this study proposes a novel mechanistic shrinkage model that combines solid matrix mobility-based shrinkage velocity and viscoelasticity consideration, incorporating variable mechanical properties to simulate deformation arising from moisture loss and pressure gradient respectively. Comparison between predicted drying kinetics and shrinkage evolution with experimental observation yielded close agreement, achieving low mean absolute error values. As the drying process progressed, a distinct anisotropic shrinkage pattern emerged, which is attributed to varied structural mobility based on temperature and moisture distribution across the food sample. Notably, shrinkage driven by moisture loss significantly outweighed that induced by pressure, exerting a predominant influence on overall volume change. Furthermore, the model demonstrated heightened sensitivity to water transport parameters compared to mechanical factors, which indicates the significance of moisture dynamics in shaping the drying process. Combined consideration of physiochemical changes and viscoelastic concept in the developed deformation model extends new possibility towards optimizing the drying process as well as quality aspect evaluation.</div></div>","PeriodicalId":359,"journal":{"name":"Journal of Food Engineering","volume":"387 ","pages":"Article 112346"},"PeriodicalIF":5.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel mechanistic model for predicting shrinkage kinetics in plant-based foods by integrating solid matrix mobility and viscoelasticity\",\"authors\":\"Sumaiya Sadika Tuly , Mohammad U.H. Joardder , Zachary G. Welsh , Azharul Karim\",\"doi\":\"10.1016/j.jfoodeng.2024.112346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Deformation during drying is a major physical change influencing drying kinetics and final product quality. Therefore, accurate prediction of shrinkage kinetics is essential for determining the optimal drying conditions for these foods. Shrinkage kinetics is greatly influenced by their structural mobility (rubbery-glassy transition) and viscoelastic properties. The current deformation models lack a comprehensive integration of structural mobility and viscoelasticity concepts, resulting in limitation in attaining insights on physiochemical state variations and viscoelastic stresses developed during drying. In order to overcome this limitation, this study proposes a novel mechanistic shrinkage model that combines solid matrix mobility-based shrinkage velocity and viscoelasticity consideration, incorporating variable mechanical properties to simulate deformation arising from moisture loss and pressure gradient respectively. Comparison between predicted drying kinetics and shrinkage evolution with experimental observation yielded close agreement, achieving low mean absolute error values. As the drying process progressed, a distinct anisotropic shrinkage pattern emerged, which is attributed to varied structural mobility based on temperature and moisture distribution across the food sample. Notably, shrinkage driven by moisture loss significantly outweighed that induced by pressure, exerting a predominant influence on overall volume change. Furthermore, the model demonstrated heightened sensitivity to water transport parameters compared to mechanical factors, which indicates the significance of moisture dynamics in shaping the drying process. Combined consideration of physiochemical changes and viscoelastic concept in the developed deformation model extends new possibility towards optimizing the drying process as well as quality aspect evaluation.</div></div>\",\"PeriodicalId\":359,\"journal\":{\"name\":\"Journal of Food Engineering\",\"volume\":\"387 \",\"pages\":\"Article 112346\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Engineering\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0260877424004126\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Engineering","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0260877424004126","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
A novel mechanistic model for predicting shrinkage kinetics in plant-based foods by integrating solid matrix mobility and viscoelasticity
Deformation during drying is a major physical change influencing drying kinetics and final product quality. Therefore, accurate prediction of shrinkage kinetics is essential for determining the optimal drying conditions for these foods. Shrinkage kinetics is greatly influenced by their structural mobility (rubbery-glassy transition) and viscoelastic properties. The current deformation models lack a comprehensive integration of structural mobility and viscoelasticity concepts, resulting in limitation in attaining insights on physiochemical state variations and viscoelastic stresses developed during drying. In order to overcome this limitation, this study proposes a novel mechanistic shrinkage model that combines solid matrix mobility-based shrinkage velocity and viscoelasticity consideration, incorporating variable mechanical properties to simulate deformation arising from moisture loss and pressure gradient respectively. Comparison between predicted drying kinetics and shrinkage evolution with experimental observation yielded close agreement, achieving low mean absolute error values. As the drying process progressed, a distinct anisotropic shrinkage pattern emerged, which is attributed to varied structural mobility based on temperature and moisture distribution across the food sample. Notably, shrinkage driven by moisture loss significantly outweighed that induced by pressure, exerting a predominant influence on overall volume change. Furthermore, the model demonstrated heightened sensitivity to water transport parameters compared to mechanical factors, which indicates the significance of moisture dynamics in shaping the drying process. Combined consideration of physiochemical changes and viscoelastic concept in the developed deformation model extends new possibility towards optimizing the drying process as well as quality aspect evaluation.
期刊介绍:
The journal publishes original research and review papers on any subject at the interface between food and engineering, particularly those of relevance to industry, including:
Engineering properties of foods, food physics and physical chemistry; processing, measurement, control, packaging, storage and distribution; engineering aspects of the design and production of novel foods and of food service and catering; design and operation of food processes, plant and equipment; economics of food engineering, including the economics of alternative processes.
Accounts of food engineering achievements are of particular value.