在硫酸肼催化下通过 Biginelli 反应前所未有地一步合成 3,4-二氢嘧啶-2-(1h)-酮、ADMET 特性、分子对接研究及其对布氏杆菌和大肠杆菌的抗菌活性

IF 1.8 3区 化学 Q3 CHEMISTRY, ORGANIC
{"title":"在硫酸肼催化下通过 Biginelli 反应前所未有地一步合成 3,4-二氢嘧啶-2-(1h)-酮、ADMET 特性、分子对接研究及其对布氏杆菌和大肠杆菌的抗菌活性","authors":"","doi":"10.1080/00397911.2024.2405931","DOIUrl":null,"url":null,"abstract":"<div><div>The syntheses of 3,4-dihydropyrimidin-2(1<em>H</em>)-ones by one-pot, three-component condensation of aldehydes, β-ketoesters and urea or thiourea have been made more simple and efficient by using 20 mol% hydrazine sulfate as catalyst. Aldehydes, β-ketoesters and urea are cyclocondensed in the presence of hydrazine sulfate to produce dihydropyrimidines in ethanol under reflux conditions. The advantages of using hydrazine sulfate as a catalyst over the traditional Biginelli reaction conditions include outstanding yields (80–91%) and a shorter (10–15 hours) reaction time. In order to evaluate the antibacterial efficiencies of the synthesized compounds, we have studied the inhibitions of microbial proliferation of both Gram-positive (<em>Bacillus brevis</em>) and Gram-negative (<em>E. coli</em>) bacterial strains in comparison to a control group. The microbial inhibitions occur in the range of 40–98% by different derivatives of dihydropyrimidinones. Molecular docking studies of the synthesized compounds have also been done using software tools such as SwissADME.</div></div>","PeriodicalId":22119,"journal":{"name":"Synthetic Communications","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unprecedented one-pot synthesis of 3,4-dihydropyrimidine-2-(1h)-ones catalyzed by hydrazine sulfate through Biginelli reaction, ADMET property, molecular docking studies and their antibacterial activity on Bacillus brevis and E. coli\",\"authors\":\"\",\"doi\":\"10.1080/00397911.2024.2405931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The syntheses of 3,4-dihydropyrimidin-2(1<em>H</em>)-ones by one-pot, three-component condensation of aldehydes, β-ketoesters and urea or thiourea have been made more simple and efficient by using 20 mol% hydrazine sulfate as catalyst. Aldehydes, β-ketoesters and urea are cyclocondensed in the presence of hydrazine sulfate to produce dihydropyrimidines in ethanol under reflux conditions. The advantages of using hydrazine sulfate as a catalyst over the traditional Biginelli reaction conditions include outstanding yields (80–91%) and a shorter (10–15 hours) reaction time. In order to evaluate the antibacterial efficiencies of the synthesized compounds, we have studied the inhibitions of microbial proliferation of both Gram-positive (<em>Bacillus brevis</em>) and Gram-negative (<em>E. coli</em>) bacterial strains in comparison to a control group. The microbial inhibitions occur in the range of 40–98% by different derivatives of dihydropyrimidinones. Molecular docking studies of the synthesized compounds have also been done using software tools such as SwissADME.</div></div>\",\"PeriodicalId\":22119,\"journal\":{\"name\":\"Synthetic Communications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-09-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/org/science/article/pii/S0039791124001103\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, ORGANIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Communications","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/org/science/article/pii/S0039791124001103","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, ORGANIC","Score":null,"Total":0}
引用次数: 0

摘要

使用 20 mol% 的硫酸肼作为催化剂,通过醛、β-酮和脲或硫脲的单锅三组分缩合合成 3,4-二氢嘧啶-2(1H)-酮的方法变得更加简单高效。在回流条件下,醛、β-酮酯和脲在硫酸肼存在下进行环缩合,在乙醇中生成二氢嘧啶。与传统的 Biginelli 反应条件相比,使用硫酸肼作为催化剂的优点包括产率高(80-91%)、反应时间短(10-15 小时)。为了评估合成化合物的抗菌效率,我们研究了与对照组相比,合成化合物对革兰氏阳性(布氏芽孢杆菌)和革兰氏阴性(大肠杆菌)细菌菌株增殖的抑制作用。二氢嘧啶酮的不同衍生物对微生物的抑制率在 40-98% 之间。此外,还使用 SwissADME 等软件工具对合成的化合物进行了分子对接研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unprecedented one-pot synthesis of 3,4-dihydropyrimidine-2-(1h)-ones catalyzed by hydrazine sulfate through Biginelli reaction, ADMET property, molecular docking studies and their antibacterial activity on Bacillus brevis and E. coli
The syntheses of 3,4-dihydropyrimidin-2(1H)-ones by one-pot, three-component condensation of aldehydes, β-ketoesters and urea or thiourea have been made more simple and efficient by using 20 mol% hydrazine sulfate as catalyst. Aldehydes, β-ketoesters and urea are cyclocondensed in the presence of hydrazine sulfate to produce dihydropyrimidines in ethanol under reflux conditions. The advantages of using hydrazine sulfate as a catalyst over the traditional Biginelli reaction conditions include outstanding yields (80–91%) and a shorter (10–15 hours) reaction time. In order to evaluate the antibacterial efficiencies of the synthesized compounds, we have studied the inhibitions of microbial proliferation of both Gram-positive (Bacillus brevis) and Gram-negative (E. coli) bacterial strains in comparison to a control group. The microbial inhibitions occur in the range of 40–98% by different derivatives of dihydropyrimidinones. Molecular docking studies of the synthesized compounds have also been done using software tools such as SwissADME.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Synthetic Communications
Synthetic Communications 化学-有机化学
CiteScore
4.40
自引率
4.80%
发文量
156
审稿时长
4.3 months
期刊介绍: Synthetic Communications presents communications describing new methods, reagents, and other synthetic work pertaining to organic chemistry with sufficient experimental detail to permit reported reactions to be repeated by a chemist reasonably skilled in the art. In addition, the Journal features short, focused review articles discussing topics within its remit of synthetic organic chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信