{"title":"在快速成型的 Ti-6Al-4V 多孔植入物上设计多层涂层,以提高摩擦学和疲劳性能","authors":"","doi":"10.1016/j.surfcoat.2024.131400","DOIUrl":null,"url":null,"abstract":"<div><div>Despite the numerous advantages of additively manufactured Ti-6Al-4V porous implants surface modified by plasma electrolyte oxidation (PEO) coatings in biomedical applications, several challenges still persist regarding their tribological and fatigue performances. To address these challenges, this study aims to engineer an innovative multilayered coating based on physical vapor deposited (PVD) Nb/NbN coatings on PEO-treaded Ti-6Al-4V porous implants. Three configurations of Nb/NbN coatings, including one, two, and three PVD layers were deposited on PEO-treated Ti-6Al-4V implants to simultaneously assess the effects of both increased coating thickness and configuration on the surface topography and mechanical performances of Ti-6Al-4V implants. Results showed that increasing the thickness and number of coatings changed the surface morphology and reduced the surface roughness. The PVD/PEO treatment demonstrated enhanced wear resistance of Ti-6Al-4V samples compared to the PEO treatment, depending on the coating conditions. Noticeably, the samples with 2 Nb/NbN layers exhibited the highest wear resistance and decreased the wear rate by 90 % compared to the Ti-6Al-4V samples. Although PEO treatment resulted in a decrease in fatigue life, the deposition of Nb/NbN coatings, especially those with 2 and 3 layers, markedly improved fatigue resistance compared to the PEO-treated samples. These modified samples attained approximately 81 % and 84 % of the fatigue life of the not-treated Ti-6Al-4V samples, respectively. Overall, the deposition of multilayered PVD Nb/NbN coatings on PEO-treated Ti-6Al-4V implants demonstrated an effective improvement in wear resistance while maintaining acceptable fatigue life under cyclic loading, making it promising for biomedical implants.</div></div>","PeriodicalId":22009,"journal":{"name":"Surface & Coatings Technology","volume":null,"pages":null},"PeriodicalIF":5.3000,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering of multilayered coating on additively manufactured Ti-6Al-4V porous implants to promote tribological and fatigue performances\",\"authors\":\"\",\"doi\":\"10.1016/j.surfcoat.2024.131400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Despite the numerous advantages of additively manufactured Ti-6Al-4V porous implants surface modified by plasma electrolyte oxidation (PEO) coatings in biomedical applications, several challenges still persist regarding their tribological and fatigue performances. To address these challenges, this study aims to engineer an innovative multilayered coating based on physical vapor deposited (PVD) Nb/NbN coatings on PEO-treaded Ti-6Al-4V porous implants. Three configurations of Nb/NbN coatings, including one, two, and three PVD layers were deposited on PEO-treated Ti-6Al-4V implants to simultaneously assess the effects of both increased coating thickness and configuration on the surface topography and mechanical performances of Ti-6Al-4V implants. Results showed that increasing the thickness and number of coatings changed the surface morphology and reduced the surface roughness. The PVD/PEO treatment demonstrated enhanced wear resistance of Ti-6Al-4V samples compared to the PEO treatment, depending on the coating conditions. Noticeably, the samples with 2 Nb/NbN layers exhibited the highest wear resistance and decreased the wear rate by 90 % compared to the Ti-6Al-4V samples. Although PEO treatment resulted in a decrease in fatigue life, the deposition of Nb/NbN coatings, especially those with 2 and 3 layers, markedly improved fatigue resistance compared to the PEO-treated samples. These modified samples attained approximately 81 % and 84 % of the fatigue life of the not-treated Ti-6Al-4V samples, respectively. Overall, the deposition of multilayered PVD Nb/NbN coatings on PEO-treated Ti-6Al-4V implants demonstrated an effective improvement in wear resistance while maintaining acceptable fatigue life under cyclic loading, making it promising for biomedical implants.</div></div>\",\"PeriodicalId\":22009,\"journal\":{\"name\":\"Surface & Coatings Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2024-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface & Coatings Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0257897224010314\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COATINGS & FILMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface & Coatings Technology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0257897224010314","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COATINGS & FILMS","Score":null,"Total":0}
Engineering of multilayered coating on additively manufactured Ti-6Al-4V porous implants to promote tribological and fatigue performances
Despite the numerous advantages of additively manufactured Ti-6Al-4V porous implants surface modified by plasma electrolyte oxidation (PEO) coatings in biomedical applications, several challenges still persist regarding their tribological and fatigue performances. To address these challenges, this study aims to engineer an innovative multilayered coating based on physical vapor deposited (PVD) Nb/NbN coatings on PEO-treaded Ti-6Al-4V porous implants. Three configurations of Nb/NbN coatings, including one, two, and three PVD layers were deposited on PEO-treated Ti-6Al-4V implants to simultaneously assess the effects of both increased coating thickness and configuration on the surface topography and mechanical performances of Ti-6Al-4V implants. Results showed that increasing the thickness and number of coatings changed the surface morphology and reduced the surface roughness. The PVD/PEO treatment demonstrated enhanced wear resistance of Ti-6Al-4V samples compared to the PEO treatment, depending on the coating conditions. Noticeably, the samples with 2 Nb/NbN layers exhibited the highest wear resistance and decreased the wear rate by 90 % compared to the Ti-6Al-4V samples. Although PEO treatment resulted in a decrease in fatigue life, the deposition of Nb/NbN coatings, especially those with 2 and 3 layers, markedly improved fatigue resistance compared to the PEO-treated samples. These modified samples attained approximately 81 % and 84 % of the fatigue life of the not-treated Ti-6Al-4V samples, respectively. Overall, the deposition of multilayered PVD Nb/NbN coatings on PEO-treated Ti-6Al-4V implants demonstrated an effective improvement in wear resistance while maintaining acceptable fatigue life under cyclic loading, making it promising for biomedical implants.
期刊介绍:
Surface and Coatings Technology is an international archival journal publishing scientific papers on significant developments in surface and interface engineering to modify and improve the surface properties of materials for protection in demanding contact conditions or aggressive environments, or for enhanced functional performance. Contributions range from original scientific articles concerned with fundamental and applied aspects of research or direct applications of metallic, inorganic, organic and composite coatings, to invited reviews of current technology in specific areas. Papers submitted to this journal are expected to be in line with the following aspects in processes, and properties/performance:
A. Processes: Physical and chemical vapour deposition techniques, thermal and plasma spraying, surface modification by directed energy techniques such as ion, electron and laser beams, thermo-chemical treatment, wet chemical and electrochemical processes such as plating, sol-gel coating, anodization, plasma electrolytic oxidation, etc., but excluding painting.
B. Properties/performance: friction performance, wear resistance (e.g., abrasion, erosion, fretting, etc), corrosion and oxidation resistance, thermal protection, diffusion resistance, hydrophilicity/hydrophobicity, and properties relevant to smart materials behaviour and enhanced multifunctional performance for environmental, energy and medical applications, but excluding device aspects.