仿射格拉斯曼的等变定向同调

Pub Date : 2024-10-02 DOI:10.1016/j.jalgebra.2024.09.009
Changlong Zhong
{"title":"仿射格拉斯曼的等变定向同调","authors":"Changlong Zhong","doi":"10.1016/j.jalgebra.2024.09.009","DOIUrl":null,"url":null,"abstract":"<div><div>We generalize the property of small-torus equivariant K-homology of the affine Grassmannian to general oriented (co)homology theory in the sense of Levine and Morel. The main tool we use is the formal affine Demazure algebra associated to the affine root system. More precisely, we prove that the small-torus equivariant oriented cohomology of the affine Grassmannian satisfies the Goresky-Kottwitz-MacPherson (GKM) condition. We also show that its dual, the small-torus equivariant homology, is isomorphic to the centralizer of the equivariant oriented cohomology of a point in the formal affine Demazure algebra.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Equivariant oriented homology of the affine Grassmannian\",\"authors\":\"Changlong Zhong\",\"doi\":\"10.1016/j.jalgebra.2024.09.009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We generalize the property of small-torus equivariant K-homology of the affine Grassmannian to general oriented (co)homology theory in the sense of Levine and Morel. The main tool we use is the formal affine Demazure algebra associated to the affine root system. More precisely, we prove that the small-torus equivariant oriented cohomology of the affine Grassmannian satisfies the Goresky-Kottwitz-MacPherson (GKM) condition. We also show that its dual, the small-torus equivariant homology, is isomorphic to the centralizer of the equivariant oriented cohomology of a point in the formal affine Demazure algebra.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005064\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005064","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们将仿射格拉斯曼的小副边等变 K-同调性质推广到莱文和莫雷尔意义上的一般定向(共)同调理论。我们使用的主要工具是与仿射根系统相关联的形式仿射 Demazure 代数。更准确地说,我们证明仿射格拉斯曼的小副等变定向同调满足戈尔斯基-科特维茨-麦克弗森(GKM)条件。我们还证明了它的对偶,即小副边等变同调,与形式仿射 Demazure 代数中点的等变定向同调的中心化同构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Equivariant oriented homology of the affine Grassmannian
We generalize the property of small-torus equivariant K-homology of the affine Grassmannian to general oriented (co)homology theory in the sense of Levine and Morel. The main tool we use is the formal affine Demazure algebra associated to the affine root system. More precisely, we prove that the small-torus equivariant oriented cohomology of the affine Grassmannian satisfies the Goresky-Kottwitz-MacPherson (GKM) condition. We also show that its dual, the small-torus equivariant homology, is isomorphic to the centralizer of the equivariant oriented cohomology of a point in the formal affine Demazure algebra.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信