提升曲线的基本阿贝尔盖

Pub Date : 2024-09-26 DOI:10.1016/j.jalgebra.2024.09.007
Jianing Yang
{"title":"提升曲线的基本阿贝尔盖","authors":"Jianing Yang","doi":"10.1016/j.jalgebra.2024.09.007","DOIUrl":null,"url":null,"abstract":"<div><div>Given a Galois cover of curves <em>f</em> over a field of characteristic <em>p</em>, the lifting problem asks whether there exists a Galois cover over a complete mixed characteristic discrete valuation ring whose reduction is <em>f</em>. In this paper, we consider the case where the Galois groups are elementary abelian <em>p</em>-groups. We prove a combinatorial criterion for lifting an elementary abelian <em>p</em>-cover, dependent on the branch loci of lifts of its <em>p</em>-cyclic subcovers. We also study how branch points of a lift coalesce on the special fiber. Finally, for <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span>, we analyze lifts for several families of <span><math><msup><mrow><mo>(</mo><mi>Z</mi><mo>/</mo><mn>2</mn><mo>)</mo></mrow><mrow><mn>3</mn></mrow></msup></math></span>-covers of various conductor types, both with equidistant branch locus geometry and non-equidistant branch locus geometry.</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lifting elementary Abelian covers of curves\",\"authors\":\"Jianing Yang\",\"doi\":\"10.1016/j.jalgebra.2024.09.007\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a Galois cover of curves <em>f</em> over a field of characteristic <em>p</em>, the lifting problem asks whether there exists a Galois cover over a complete mixed characteristic discrete valuation ring whose reduction is <em>f</em>. In this paper, we consider the case where the Galois groups are elementary abelian <em>p</em>-groups. We prove a combinatorial criterion for lifting an elementary abelian <em>p</em>-cover, dependent on the branch loci of lifts of its <em>p</em>-cyclic subcovers. We also study how branch points of a lift coalesce on the special fiber. Finally, for <span><math><mi>p</mi><mo>=</mo><mn>2</mn></math></span>, we analyze lifts for several families of <span><math><msup><mrow><mo>(</mo><mi>Z</mi><mo>/</mo><mn>2</mn><mo>)</mo></mrow><mrow><mn>3</mn></mrow></msup></math></span>-covers of various conductor types, both with equidistant branch locus geometry and non-equidistant branch locus geometry.</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021869324005040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021869324005040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

给定特性 p 域上曲线 f 的伽罗瓦盖,提升问题问是否存在一个完整混合特性离散估值环上的伽罗瓦盖,其还原为 f。我们证明了一个提升基本无常 p 盖的组合准则,它取决于其 p 循环子盖的提升支点位置。我们还研究了提升的分支点如何在特殊纤维上凝聚。最后,对于 p=2,我们分析了不同导体类型的 (Z/2)3 覆盖的几个族的提升,既有等距支点几何,也有非等距支点几何。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Lifting elementary Abelian covers of curves
Given a Galois cover of curves f over a field of characteristic p, the lifting problem asks whether there exists a Galois cover over a complete mixed characteristic discrete valuation ring whose reduction is f. In this paper, we consider the case where the Galois groups are elementary abelian p-groups. We prove a combinatorial criterion for lifting an elementary abelian p-cover, dependent on the branch loci of lifts of its p-cyclic subcovers. We also study how branch points of a lift coalesce on the special fiber. Finally, for p=2, we analyze lifts for several families of (Z/2)3-covers of various conductor types, both with equidistant branch locus geometry and non-equidistant branch locus geometry.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信