{"title":"简便制备铜/高岭土纳米复合材料,作为水溶液中还原 4-硝基苯酚的高效异相催化剂","authors":"Zinabu Gashaw Asmare , Belete Asefa Aragaw , Minaleshewa Atlabachew , Amare Aregahegn Dubale","doi":"10.1016/j.rechem.2024.101836","DOIUrl":null,"url":null,"abstract":"<div><div>Hazardous organic pollutants in industrial wastewaters are becoming a major global challenge that threatens life on earth and particularly poses a serious health risk to human beings. 4-Nitrophenol (4-NP) is a highly hazardous organic contaminant that has been extensively utilized across multiple industries, and their wastewater disposal into water streams leads to a higher accumulation of 4-NP. It is therefore important for both academia and industry to make catalysts that are cheap, very effective, good for the environment, easy to recover, and can be used more than once for reducing 4-NP in normal conditions. This paper reports the synthesis, characterization, and application of Cu/kaolin nanocomposite (NC) as an efficient heterogeneous catalyst for decomposing 4-NP, a model organic molecule. The catalyst was synthesized by incorporating a copper precursor into layered kaolin clay and directly reducing the metal precursor using sodium borohydride (NaBH<sub>4</sub>). The morphology, structure, surface property, and interaction of the resulting Cu/kaolin NC were characterized by ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron spectroscopy/energy-dispersive X-ray spectroscopy, selected area electron diffraction, X-ray diffraction, and N<sub>2</sub> adsorption/desorption, and the results clearly demonstrated the growth of copper nanoparticles on the kaolin surface. It was discovered that the Cu nanoparticles (NPs) on the kaolin surface had a crystallite size of about 23.6 nm. The significance of Cu NPs and the high catalytic activity of the synthesized Cu/kaolin NC toward 4-NP reduction by NaBH<sub>4</sub> were evaluated by the catalytic reduction experiments. Among the different nanocomposites synthesized, 30-Cu/kaolin showed the highest catalytic activity for 4-NP reduction, with a reduction efficiency of over 99 % within 4 min with a pseudo-first-order rate constant, k<sub>app</sub>, of 1.23 min<sup>−1</sup>. Furthermore, the reusability test indicated that Cu/kaolin NC can be reused for up to six runs efficiently without significant decrease in its catalytic performance, indicating the nanocomposite has excellent stability and great potential applications in industrial and agricultural wastewater treatment.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"11 ","pages":"Article 101836"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile fabrication of Cu/kaolin nanocomposite as highly efficient heterogeneous catalyst for 4-nitrophenol reduction in aqueous solution\",\"authors\":\"Zinabu Gashaw Asmare , Belete Asefa Aragaw , Minaleshewa Atlabachew , Amare Aregahegn Dubale\",\"doi\":\"10.1016/j.rechem.2024.101836\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Hazardous organic pollutants in industrial wastewaters are becoming a major global challenge that threatens life on earth and particularly poses a serious health risk to human beings. 4-Nitrophenol (4-NP) is a highly hazardous organic contaminant that has been extensively utilized across multiple industries, and their wastewater disposal into water streams leads to a higher accumulation of 4-NP. It is therefore important for both academia and industry to make catalysts that are cheap, very effective, good for the environment, easy to recover, and can be used more than once for reducing 4-NP in normal conditions. This paper reports the synthesis, characterization, and application of Cu/kaolin nanocomposite (NC) as an efficient heterogeneous catalyst for decomposing 4-NP, a model organic molecule. The catalyst was synthesized by incorporating a copper precursor into layered kaolin clay and directly reducing the metal precursor using sodium borohydride (NaBH<sub>4</sub>). The morphology, structure, surface property, and interaction of the resulting Cu/kaolin NC were characterized by ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron spectroscopy/energy-dispersive X-ray spectroscopy, selected area electron diffraction, X-ray diffraction, and N<sub>2</sub> adsorption/desorption, and the results clearly demonstrated the growth of copper nanoparticles on the kaolin surface. It was discovered that the Cu nanoparticles (NPs) on the kaolin surface had a crystallite size of about 23.6 nm. The significance of Cu NPs and the high catalytic activity of the synthesized Cu/kaolin NC toward 4-NP reduction by NaBH<sub>4</sub> were evaluated by the catalytic reduction experiments. Among the different nanocomposites synthesized, 30-Cu/kaolin showed the highest catalytic activity for 4-NP reduction, with a reduction efficiency of over 99 % within 4 min with a pseudo-first-order rate constant, k<sub>app</sub>, of 1.23 min<sup>−1</sup>. Furthermore, the reusability test indicated that Cu/kaolin NC can be reused for up to six runs efficiently without significant decrease in its catalytic performance, indicating the nanocomposite has excellent stability and great potential applications in industrial and agricultural wastewater treatment.</div></div>\",\"PeriodicalId\":420,\"journal\":{\"name\":\"Results in Chemistry\",\"volume\":\"11 \",\"pages\":\"Article 101836\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Results in Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211715624005320\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715624005320","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Facile fabrication of Cu/kaolin nanocomposite as highly efficient heterogeneous catalyst for 4-nitrophenol reduction in aqueous solution
Hazardous organic pollutants in industrial wastewaters are becoming a major global challenge that threatens life on earth and particularly poses a serious health risk to human beings. 4-Nitrophenol (4-NP) is a highly hazardous organic contaminant that has been extensively utilized across multiple industries, and their wastewater disposal into water streams leads to a higher accumulation of 4-NP. It is therefore important for both academia and industry to make catalysts that are cheap, very effective, good for the environment, easy to recover, and can be used more than once for reducing 4-NP in normal conditions. This paper reports the synthesis, characterization, and application of Cu/kaolin nanocomposite (NC) as an efficient heterogeneous catalyst for decomposing 4-NP, a model organic molecule. The catalyst was synthesized by incorporating a copper precursor into layered kaolin clay and directly reducing the metal precursor using sodium borohydride (NaBH4). The morphology, structure, surface property, and interaction of the resulting Cu/kaolin NC were characterized by ultraviolet–visible spectroscopy, Fourier transform infrared spectroscopy, scanning electron spectroscopy/energy-dispersive X-ray spectroscopy, selected area electron diffraction, X-ray diffraction, and N2 adsorption/desorption, and the results clearly demonstrated the growth of copper nanoparticles on the kaolin surface. It was discovered that the Cu nanoparticles (NPs) on the kaolin surface had a crystallite size of about 23.6 nm. The significance of Cu NPs and the high catalytic activity of the synthesized Cu/kaolin NC toward 4-NP reduction by NaBH4 were evaluated by the catalytic reduction experiments. Among the different nanocomposites synthesized, 30-Cu/kaolin showed the highest catalytic activity for 4-NP reduction, with a reduction efficiency of over 99 % within 4 min with a pseudo-first-order rate constant, kapp, of 1.23 min−1. Furthermore, the reusability test indicated that Cu/kaolin NC can be reused for up to six runs efficiently without significant decrease in its catalytic performance, indicating the nanocomposite has excellent stability and great potential applications in industrial and agricultural wastewater treatment.