{"title":"氧化还原法制备的纳米氧化锰用于去除空气中的甲苯氧化物","authors":"Chunmei Fan , Shuang Chen , Jia Zeng , Hongmei Xie , Ling Chen , Ping Ouyang , Guilin Zhou","doi":"10.1016/j.jpcs.2024.112379","DOIUrl":null,"url":null,"abstract":"<div><div>Catalytic oxidation is an efficient VOCs removal technology with great potential and development advantages. The key to the oxidative elimination of VOCs lies in the development and application of the catalyst with high efficiency. In this work, the nano-MnO<sub>x</sub> catalysts were prepared by redox method and the catalytic oxidation performance of toluene was studied. The calcination temperature could effectively change the surface chemical composition and the nano-MnO<sub>x</sub> catalyst structures, which could effectively regulate the number of active centers on the catalyst surface to improve the adsorption, activation, and oxidation ability of the nano-MnO<sub>x</sub> catalysts for toluene molecules. The nano-MnO<sub>x</sub> catalyst dominated by the MnO<sub>2</sub> phase, which was prepared at the calcination temperature of 400 °C, had a high specific surface area, developed porosity, abundant reactive oxygen species, and oxygen vacancies. The structural characteristics are conducive to the adsorption, activation, and oxidation of toluene molecules, and thus exhibited excellent toluene catalytic oxidation activity. At the reaction temperature of 140 °C, the toluene oxidation conversion was as high as 99.4 %, and the toluene conversion remained above 96.6 % after experiencing a 690 min stability test.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"196 ","pages":"Article 112379"},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nano-MnOx prepared by redox method for toluene oxidation removal from air\",\"authors\":\"Chunmei Fan , Shuang Chen , Jia Zeng , Hongmei Xie , Ling Chen , Ping Ouyang , Guilin Zhou\",\"doi\":\"10.1016/j.jpcs.2024.112379\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Catalytic oxidation is an efficient VOCs removal technology with great potential and development advantages. The key to the oxidative elimination of VOCs lies in the development and application of the catalyst with high efficiency. In this work, the nano-MnO<sub>x</sub> catalysts were prepared by redox method and the catalytic oxidation performance of toluene was studied. The calcination temperature could effectively change the surface chemical composition and the nano-MnO<sub>x</sub> catalyst structures, which could effectively regulate the number of active centers on the catalyst surface to improve the adsorption, activation, and oxidation ability of the nano-MnO<sub>x</sub> catalysts for toluene molecules. The nano-MnO<sub>x</sub> catalyst dominated by the MnO<sub>2</sub> phase, which was prepared at the calcination temperature of 400 °C, had a high specific surface area, developed porosity, abundant reactive oxygen species, and oxygen vacancies. The structural characteristics are conducive to the adsorption, activation, and oxidation of toluene molecules, and thus exhibited excellent toluene catalytic oxidation activity. At the reaction temperature of 140 °C, the toluene oxidation conversion was as high as 99.4 %, and the toluene conversion remained above 96.6 % after experiencing a 690 min stability test.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":\"196 \",\"pages\":\"Article 112379\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724005146\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005146","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Nano-MnOx prepared by redox method for toluene oxidation removal from air
Catalytic oxidation is an efficient VOCs removal technology with great potential and development advantages. The key to the oxidative elimination of VOCs lies in the development and application of the catalyst with high efficiency. In this work, the nano-MnOx catalysts were prepared by redox method and the catalytic oxidation performance of toluene was studied. The calcination temperature could effectively change the surface chemical composition and the nano-MnOx catalyst structures, which could effectively regulate the number of active centers on the catalyst surface to improve the adsorption, activation, and oxidation ability of the nano-MnOx catalysts for toluene molecules. The nano-MnOx catalyst dominated by the MnO2 phase, which was prepared at the calcination temperature of 400 °C, had a high specific surface area, developed porosity, abundant reactive oxygen species, and oxygen vacancies. The structural characteristics are conducive to the adsorption, activation, and oxidation of toluene molecules, and thus exhibited excellent toluene catalytic oxidation activity. At the reaction temperature of 140 °C, the toluene oxidation conversion was as high as 99.4 %, and the toluene conversion remained above 96.6 % after experiencing a 690 min stability test.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.