{"title":"增强 SrZrS3 包晶太阳能电池:无机传输层的 SCAPS-1D 综合分析","authors":"","doi":"10.1016/j.jpcs.2024.112378","DOIUrl":null,"url":null,"abstract":"<div><div>In the quest for sustainable energy, perovskite solar cells have emerged as promising candidates due to their high power conversion efficiencies and excellent optoelectronic properties. This study focuses on SrZrS<sub>3</sub>, a lead-free chalcogenide perovskite, and its integration with various inorganic transport layers for enhanced photovoltaic performance. Using SCAPS-1D simulation software, the effects of different electron transport layers (ETLs) and hole transport layers (HTLs) on device efficiency were systematically explored. The device with a-Si:H as the HTL and ZnS as the ETL (<em>aSi-3</em>) shows the highest efficiency of 20.01 % resulting from better energy band alignment and reduced recombination losses. This study highlights the importance of optimizing transport layers for enhancing SrZrS<sub>3</sub>-based solar cells, offering insights for developing high-performance, lead-free perovskite solar cells.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing SrZrS3 perovskite solar cells: A comprehensive SCAPS-1D analysis of inorganic transport layers\",\"authors\":\"\",\"doi\":\"10.1016/j.jpcs.2024.112378\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In the quest for sustainable energy, perovskite solar cells have emerged as promising candidates due to their high power conversion efficiencies and excellent optoelectronic properties. This study focuses on SrZrS<sub>3</sub>, a lead-free chalcogenide perovskite, and its integration with various inorganic transport layers for enhanced photovoltaic performance. Using SCAPS-1D simulation software, the effects of different electron transport layers (ETLs) and hole transport layers (HTLs) on device efficiency were systematically explored. The device with a-Si:H as the HTL and ZnS as the ETL (<em>aSi-3</em>) shows the highest efficiency of 20.01 % resulting from better energy band alignment and reduced recombination losses. This study highlights the importance of optimizing transport layers for enhancing SrZrS<sub>3</sub>-based solar cells, offering insights for developing high-performance, lead-free perovskite solar cells.</div></div>\",\"PeriodicalId\":16811,\"journal\":{\"name\":\"Journal of Physics and Chemistry of Solids\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics and Chemistry of Solids\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022369724005134\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369724005134","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Enhancing SrZrS3 perovskite solar cells: A comprehensive SCAPS-1D analysis of inorganic transport layers
In the quest for sustainable energy, perovskite solar cells have emerged as promising candidates due to their high power conversion efficiencies and excellent optoelectronic properties. This study focuses on SrZrS3, a lead-free chalcogenide perovskite, and its integration with various inorganic transport layers for enhanced photovoltaic performance. Using SCAPS-1D simulation software, the effects of different electron transport layers (ETLs) and hole transport layers (HTLs) on device efficiency were systematically explored. The device with a-Si:H as the HTL and ZnS as the ETL (aSi-3) shows the highest efficiency of 20.01 % resulting from better energy band alignment and reduced recombination losses. This study highlights the importance of optimizing transport layers for enhancing SrZrS3-based solar cells, offering insights for developing high-performance, lead-free perovskite solar cells.
期刊介绍:
The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems.
Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal:
Low-dimensional systems
Exotic states of quantum electron matter including topological phases
Energy conversion and storage
Interfaces, nanoparticles and catalysts.