{"title":"Tribonacci 立方体的莫斯塔尔指数","authors":"","doi":"10.1016/j.disc.2024.114281","DOIUrl":null,"url":null,"abstract":"<div><div>Tribonacci cubes <span><math><msubsup><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> are a class of hypercube-like cubes obtained by removing all vertices of hypercubes <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> that have more than two consecutive 1s. In this paper, we calculate the Mostar index of Tribonacci cubes, which is a measure of how far the graph is from being distance-balanced and is used to study various properties of chemical graphs.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Mostar index of Tribonacci cubes\",\"authors\":\"\",\"doi\":\"10.1016/j.disc.2024.114281\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Tribonacci cubes <span><math><msubsup><mrow><mi>Γ</mi></mrow><mrow><mi>n</mi></mrow><mrow><mo>(</mo><mn>3</mn><mo>)</mo></mrow></msubsup></math></span> are a class of hypercube-like cubes obtained by removing all vertices of hypercubes <span><math><msub><mrow><mi>Q</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span> that have more than two consecutive 1s. In this paper, we calculate the Mostar index of Tribonacci cubes, which is a measure of how far the graph is from being distance-balanced and is used to study various properties of chemical graphs.</div></div>\",\"PeriodicalId\":50572,\"journal\":{\"name\":\"Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0012365X24004126\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0012365X24004126","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Tribonacci cubes are a class of hypercube-like cubes obtained by removing all vertices of hypercubes that have more than two consecutive 1s. In this paper, we calculate the Mostar index of Tribonacci cubes, which is a measure of how far the graph is from being distance-balanced and is used to study various properties of chemical graphs.
期刊介绍:
Discrete Mathematics provides a common forum for significant research in many areas of discrete mathematics and combinatorics. Among the fields covered by Discrete Mathematics are graph and hypergraph theory, enumeration, coding theory, block designs, the combinatorics of partially ordered sets, extremal set theory, matroid theory, algebraic combinatorics, discrete geometry, matrices, and discrete probability theory.
Items in the journal include research articles (Contributions or Notes, depending on length) and survey/expository articles (Perspectives). Efforts are made to process the submission of Notes (short articles) quickly. The Perspectives section features expository articles accessible to a broad audience that cast new light or present unifying points of view on well-known or insufficiently-known topics.