基于指数型核函数的模糊稳健回归

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Lingtao Kong, Chenwei Song
{"title":"基于指数型核函数的模糊稳健回归","authors":"Lingtao Kong,&nbsp;Chenwei Song","doi":"10.1016/j.cam.2024.116295","DOIUrl":null,"url":null,"abstract":"<div><div>The least squares method is a frequently used technique in fuzzy regression analysis. However, it is highly sensitive to outliers in the dataset. To address this challenge, we propose a novel robust fuzzy regression model based on exponential-type kernel functions. This approach effectively mitigates the influence of poorly fitted observations on the predicted results by reducing their weights. Furthermore, we use the <span><math><mrow><mi>g</mi><mi>h</mi></mrow></math></span>-transformation to guarantee the nonnegativity of the spreads of the predicted response variable. In order to evaluate the performance of our method, a simulation study and three real data sets were considered. The experimental results demonstrate that the proposed method outperforms several popular robust methods in almost all cases. Furthermore, a sensitivity analysis of the estimated parameters provides further evidence of the superior efficiency of the proposed method.</div></div>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy robust regression based on exponential-type kernel functions\",\"authors\":\"Lingtao Kong,&nbsp;Chenwei Song\",\"doi\":\"10.1016/j.cam.2024.116295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The least squares method is a frequently used technique in fuzzy regression analysis. However, it is highly sensitive to outliers in the dataset. To address this challenge, we propose a novel robust fuzzy regression model based on exponential-type kernel functions. This approach effectively mitigates the influence of poorly fitted observations on the predicted results by reducing their weights. Furthermore, we use the <span><math><mrow><mi>g</mi><mi>h</mi></mrow></math></span>-transformation to guarantee the nonnegativity of the spreads of the predicted response variable. In order to evaluate the performance of our method, a simulation study and three real data sets were considered. The experimental results demonstrate that the proposed method outperforms several popular robust methods in almost all cases. Furthermore, a sensitivity analysis of the estimated parameters provides further evidence of the superior efficiency of the proposed method.</div></div>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005430\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005430","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

最小二乘法是模糊回归分析中经常使用的一种技术。然而,它对数据集中的异常值非常敏感。为了应对这一挑战,我们提出了一种基于指数型核函数的新型稳健模糊回归模型。这种方法通过降低拟合不良观测值的权重,有效减轻了它们对预测结果的影响。此外,我们还使用了 gh 变换来保证预测响应变量的非负性。为了评估我们方法的性能,我们考虑了模拟研究和三个真实数据集。实验结果表明,所提出的方法几乎在所有情况下都优于几种流行的稳健方法。此外,对估计参数的敏感性分析进一步证明了所提方法的卓越效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy robust regression based on exponential-type kernel functions
The least squares method is a frequently used technique in fuzzy regression analysis. However, it is highly sensitive to outliers in the dataset. To address this challenge, we propose a novel robust fuzzy regression model based on exponential-type kernel functions. This approach effectively mitigates the influence of poorly fitted observations on the predicted results by reducing their weights. Furthermore, we use the gh-transformation to guarantee the nonnegativity of the spreads of the predicted response variable. In order to evaluate the performance of our method, a simulation study and three real data sets were considered. The experimental results demonstrate that the proposed method outperforms several popular robust methods in almost all cases. Furthermore, a sensitivity analysis of the estimated parameters provides further evidence of the superior efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信