基于指数型核函数的模糊稳健回归

IF 2.1 2区 数学 Q1 MATHEMATICS, APPLIED
Lingtao Kong, Chenwei Song
{"title":"基于指数型核函数的模糊稳健回归","authors":"Lingtao Kong,&nbsp;Chenwei Song","doi":"10.1016/j.cam.2024.116295","DOIUrl":null,"url":null,"abstract":"<div><div>The least squares method is a frequently used technique in fuzzy regression analysis. However, it is highly sensitive to outliers in the dataset. To address this challenge, we propose a novel robust fuzzy regression model based on exponential-type kernel functions. This approach effectively mitigates the influence of poorly fitted observations on the predicted results by reducing their weights. Furthermore, we use the <span><math><mrow><mi>g</mi><mi>h</mi></mrow></math></span>-transformation to guarantee the nonnegativity of the spreads of the predicted response variable. In order to evaluate the performance of our method, a simulation study and three real data sets were considered. The experimental results demonstrate that the proposed method outperforms several popular robust methods in almost all cases. Furthermore, a sensitivity analysis of the estimated parameters provides further evidence of the superior efficiency of the proposed method.</div></div>","PeriodicalId":50226,"journal":{"name":"Journal of Computational and Applied Mathematics","volume":"457 ","pages":"Article 116295"},"PeriodicalIF":2.1000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fuzzy robust regression based on exponential-type kernel functions\",\"authors\":\"Lingtao Kong,&nbsp;Chenwei Song\",\"doi\":\"10.1016/j.cam.2024.116295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The least squares method is a frequently used technique in fuzzy regression analysis. However, it is highly sensitive to outliers in the dataset. To address this challenge, we propose a novel robust fuzzy regression model based on exponential-type kernel functions. This approach effectively mitigates the influence of poorly fitted observations on the predicted results by reducing their weights. Furthermore, we use the <span><math><mrow><mi>g</mi><mi>h</mi></mrow></math></span>-transformation to guarantee the nonnegativity of the spreads of the predicted response variable. In order to evaluate the performance of our method, a simulation study and three real data sets were considered. The experimental results demonstrate that the proposed method outperforms several popular robust methods in almost all cases. Furthermore, a sensitivity analysis of the estimated parameters provides further evidence of the superior efficiency of the proposed method.</div></div>\",\"PeriodicalId\":50226,\"journal\":{\"name\":\"Journal of Computational and Applied Mathematics\",\"volume\":\"457 \",\"pages\":\"Article 116295\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Computational and Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377042724005430\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational and Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377042724005430","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

最小二乘法是模糊回归分析中经常使用的一种技术。然而,它对数据集中的异常值非常敏感。为了应对这一挑战,我们提出了一种基于指数型核函数的新型稳健模糊回归模型。这种方法通过降低拟合不良观测值的权重,有效减轻了它们对预测结果的影响。此外,我们还使用了 gh 变换来保证预测响应变量的非负性。为了评估我们方法的性能,我们考虑了模拟研究和三个真实数据集。实验结果表明,所提出的方法几乎在所有情况下都优于几种流行的稳健方法。此外,对估计参数的敏感性分析进一步证明了所提方法的卓越效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fuzzy robust regression based on exponential-type kernel functions
The least squares method is a frequently used technique in fuzzy regression analysis. However, it is highly sensitive to outliers in the dataset. To address this challenge, we propose a novel robust fuzzy regression model based on exponential-type kernel functions. This approach effectively mitigates the influence of poorly fitted observations on the predicted results by reducing their weights. Furthermore, we use the gh-transformation to guarantee the nonnegativity of the spreads of the predicted response variable. In order to evaluate the performance of our method, a simulation study and three real data sets were considered. The experimental results demonstrate that the proposed method outperforms several popular robust methods in almost all cases. Furthermore, a sensitivity analysis of the estimated parameters provides further evidence of the superior efficiency of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.40
自引率
4.20%
发文量
437
审稿时长
3.0 months
期刊介绍: The Journal of Computational and Applied Mathematics publishes original papers of high scientific value in all areas of computational and applied mathematics. The main interest of the Journal is in papers that describe and analyze new computational techniques for solving scientific or engineering problems. Also the improved analysis, including the effectiveness and applicability, of existing methods and algorithms is of importance. The computational efficiency (e.g. the convergence, stability, accuracy, ...) should be proved and illustrated by nontrivial numerical examples. Papers describing only variants of existing methods, without adding significant new computational properties are not of interest. The audience consists of: applied mathematicians, numerical analysts, computational scientists and engineers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信