Changmin Lee , Sangwook Park , Hyukmin Kwon , Kiho Lee , Hayoon Lee , Seokwoo Kang , Dongmin Park , Jongwook Park
{"title":"通过电荷转移控制实现基于蒽的新型蓝色发光体","authors":"Changmin Lee , Sangwook Park , Hyukmin Kwon , Kiho Lee , Hayoon Lee , Seokwoo Kang , Dongmin Park , Jongwook Park","doi":"10.1016/j.synthmet.2024.117762","DOIUrl":null,"url":null,"abstract":"<div><div>We designed new moieties with varying electron-donating effects and sizes based on diphenylamine and introduced them into anthracene to synthesize three types of emitting materials. All three materials exhibited high thermal stability with glass transition temperatures above 175°C, confirming their potential as OLED emitters. Devices doped with N<sub>9</sub>,N<sub>9</sub>,N<sub>10</sub>,N<sub>10</sub>-tetraphenylanthracene-9,10-diamine (TAD), where diphenyl amine is substituted on both sides, and N<sub>9</sub>,N<sub>10</sub>-di([1,1′-biphenyl]-4-yl)-N<sub>9</sub>,N<sub>10</sub>-bis(dibenzo[<em>b</em>,<em>d</em>]furan-2-yl)anthracene-9,10 diamine (ABFA), with a fused side group of diphenyl amine and dibenzofuran, showed EQEs of 1.28 % and 3.57 % respectively. Due to the intramolecular charge transfer (ICT), they exhibited EL<sub>max</sub> values at 517 nm and 538 nm. On the other hand, the device doped with N,N′-(anthracene-9,10-diylbis(4,1-phenylene))bis(N-([1,1′-biphenyl]-4-yl)dibenzo[<em>b</em>,<em>d</em>]furan-2-amine) (APBFA), which has optimized side groups that suppress ICT and intermolecular packing, achieved a relatively high EQE of 4.48 % and showed blue emission with CIE coordinates of (0.146, 0.142).</div></div>","PeriodicalId":22245,"journal":{"name":"Synthetic Metals","volume":"309 ","pages":"Article 117762"},"PeriodicalIF":4.0000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"New blue emitters based on anthracene through charge transfer control\",\"authors\":\"Changmin Lee , Sangwook Park , Hyukmin Kwon , Kiho Lee , Hayoon Lee , Seokwoo Kang , Dongmin Park , Jongwook Park\",\"doi\":\"10.1016/j.synthmet.2024.117762\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We designed new moieties with varying electron-donating effects and sizes based on diphenylamine and introduced them into anthracene to synthesize three types of emitting materials. All three materials exhibited high thermal stability with glass transition temperatures above 175°C, confirming their potential as OLED emitters. Devices doped with N<sub>9</sub>,N<sub>9</sub>,N<sub>10</sub>,N<sub>10</sub>-tetraphenylanthracene-9,10-diamine (TAD), where diphenyl amine is substituted on both sides, and N<sub>9</sub>,N<sub>10</sub>-di([1,1′-biphenyl]-4-yl)-N<sub>9</sub>,N<sub>10</sub>-bis(dibenzo[<em>b</em>,<em>d</em>]furan-2-yl)anthracene-9,10 diamine (ABFA), with a fused side group of diphenyl amine and dibenzofuran, showed EQEs of 1.28 % and 3.57 % respectively. Due to the intramolecular charge transfer (ICT), they exhibited EL<sub>max</sub> values at 517 nm and 538 nm. On the other hand, the device doped with N,N′-(anthracene-9,10-diylbis(4,1-phenylene))bis(N-([1,1′-biphenyl]-4-yl)dibenzo[<em>b</em>,<em>d</em>]furan-2-amine) (APBFA), which has optimized side groups that suppress ICT and intermolecular packing, achieved a relatively high EQE of 4.48 % and showed blue emission with CIE coordinates of (0.146, 0.142).</div></div>\",\"PeriodicalId\":22245,\"journal\":{\"name\":\"Synthetic Metals\",\"volume\":\"309 \",\"pages\":\"Article 117762\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Synthetic Metals\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0379677924002248\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Synthetic Metals","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0379677924002248","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
New blue emitters based on anthracene through charge transfer control
We designed new moieties with varying electron-donating effects and sizes based on diphenylamine and introduced them into anthracene to synthesize three types of emitting materials. All three materials exhibited high thermal stability with glass transition temperatures above 175°C, confirming their potential as OLED emitters. Devices doped with N9,N9,N10,N10-tetraphenylanthracene-9,10-diamine (TAD), where diphenyl amine is substituted on both sides, and N9,N10-di([1,1′-biphenyl]-4-yl)-N9,N10-bis(dibenzo[b,d]furan-2-yl)anthracene-9,10 diamine (ABFA), with a fused side group of diphenyl amine and dibenzofuran, showed EQEs of 1.28 % and 3.57 % respectively. Due to the intramolecular charge transfer (ICT), they exhibited ELmax values at 517 nm and 538 nm. On the other hand, the device doped with N,N′-(anthracene-9,10-diylbis(4,1-phenylene))bis(N-([1,1′-biphenyl]-4-yl)dibenzo[b,d]furan-2-amine) (APBFA), which has optimized side groups that suppress ICT and intermolecular packing, achieved a relatively high EQE of 4.48 % and showed blue emission with CIE coordinates of (0.146, 0.142).
期刊介绍:
This journal is an international medium for the rapid publication of original research papers, short communications and subject reviews dealing with research on and applications of electronic polymers and electronic molecular materials including novel carbon architectures. These functional materials have the properties of metals, semiconductors or magnets and are distinguishable from elemental and alloy/binary metals, semiconductors and magnets.