Zhong Zhang , Da Wang , Lu Yao , Zhenyuan Gu , Lijun Ke , Jie Xiao
{"title":"承受非均匀压力和热负荷的功能分级多孔夹层管道中传热和应力的渐近解法","authors":"Zhong Zhang , Da Wang , Lu Yao , Zhenyuan Gu , Lijun Ke , Jie Xiao","doi":"10.1016/j.tws.2024.112531","DOIUrl":null,"url":null,"abstract":"<div><div>In this work, thermomechanical behaviors of temperature-dependent (TD) functionally graded porous (FGP) sandwich pipes subjected to nonuniform pressures and thermal loads are studied. Because the material properties are variable across the wall of the pipe, seeking exact solutions for the pipe is almost impossible. We use a slice model where the pipe is partitioned into plenty of annular slices and each slice is assumed to have uniform material properties. First, the nonlinear heat transfer along the pipe wall thickness is obtained by introducing an iterative procedure. Then, by using the Fourier series, the mechanical problem is decomposed into axisymmetric and nonaxisymmetric parts. Both the parts can be treated by the state space method and transfer matrix method, and then the superposition principle is used to obtain the displacement and stress distributions. The model results are in good consistency with those obtained from the numerical simulation and those reported in the literature. Finally, an FGP sandwich pipe is considered to discuss the effects of the temperature dependence of material properties (TDMP), power-law index, porosity, and pressure distribution on its thermomechanical behaviors.</div></div>","PeriodicalId":49435,"journal":{"name":"Thin-Walled Structures","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotic solutions for heat transfer and stresses in functionally graded porous sandwich pipes subjected to nonuniform pressures and thermal loads\",\"authors\":\"Zhong Zhang , Da Wang , Lu Yao , Zhenyuan Gu , Lijun Ke , Jie Xiao\",\"doi\":\"10.1016/j.tws.2024.112531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this work, thermomechanical behaviors of temperature-dependent (TD) functionally graded porous (FGP) sandwich pipes subjected to nonuniform pressures and thermal loads are studied. Because the material properties are variable across the wall of the pipe, seeking exact solutions for the pipe is almost impossible. We use a slice model where the pipe is partitioned into plenty of annular slices and each slice is assumed to have uniform material properties. First, the nonlinear heat transfer along the pipe wall thickness is obtained by introducing an iterative procedure. Then, by using the Fourier series, the mechanical problem is decomposed into axisymmetric and nonaxisymmetric parts. Both the parts can be treated by the state space method and transfer matrix method, and then the superposition principle is used to obtain the displacement and stress distributions. The model results are in good consistency with those obtained from the numerical simulation and those reported in the literature. Finally, an FGP sandwich pipe is considered to discuss the effects of the temperature dependence of material properties (TDMP), power-law index, porosity, and pressure distribution on its thermomechanical behaviors.</div></div>\",\"PeriodicalId\":49435,\"journal\":{\"name\":\"Thin-Walled Structures\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.7000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Thin-Walled Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263823124009728\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CIVIL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Thin-Walled Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263823124009728","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
Asymptotic solutions for heat transfer and stresses in functionally graded porous sandwich pipes subjected to nonuniform pressures and thermal loads
In this work, thermomechanical behaviors of temperature-dependent (TD) functionally graded porous (FGP) sandwich pipes subjected to nonuniform pressures and thermal loads are studied. Because the material properties are variable across the wall of the pipe, seeking exact solutions for the pipe is almost impossible. We use a slice model where the pipe is partitioned into plenty of annular slices and each slice is assumed to have uniform material properties. First, the nonlinear heat transfer along the pipe wall thickness is obtained by introducing an iterative procedure. Then, by using the Fourier series, the mechanical problem is decomposed into axisymmetric and nonaxisymmetric parts. Both the parts can be treated by the state space method and transfer matrix method, and then the superposition principle is used to obtain the displacement and stress distributions. The model results are in good consistency with those obtained from the numerical simulation and those reported in the literature. Finally, an FGP sandwich pipe is considered to discuss the effects of the temperature dependence of material properties (TDMP), power-law index, porosity, and pressure distribution on its thermomechanical behaviors.
期刊介绍:
Thin-walled structures comprises an important and growing proportion of engineering construction with areas of application becoming increasingly diverse, ranging from aircraft, bridges, ships and oil rigs to storage vessels, industrial buildings and warehouses.
Many factors, including cost and weight economy, new materials and processes and the growth of powerful methods of analysis have contributed to this growth, and led to the need for a journal which concentrates specifically on structures in which problems arise due to the thinness of the walls. This field includes cold– formed sections, plate and shell structures, reinforced plastics structures and aluminium structures, and is of importance in many branches of engineering.
The primary criterion for consideration of papers in Thin–Walled Structures is that they must be concerned with thin–walled structures or the basic problems inherent in thin–walled structures. Provided this criterion is satisfied no restriction is placed on the type of construction, material or field of application. Papers on theory, experiment, design, etc., are published and it is expected that many papers will contain aspects of all three.