阿贝尔范畴中的扭转简单对象

IF 0.7 2区 数学 Q2 MATHEMATICS
Sergio Pavon
{"title":"阿贝尔范畴中的扭转简单对象","authors":"Sergio Pavon","doi":"10.1016/j.jpaa.2024.107818","DOIUrl":null,"url":null,"abstract":"<div><div>We introduce the notion of torsion-simple objects in an abelian category: these are the objects which are always either torsion or torsion-free with respect to any torsion pair. We present some general results concerning their properties, and then proceed to investigate the notion in various contexts, such as the category of modules over an artin algebra or a commutative noetherian ring, and the category of quasi-coherent sheaves over the projective line.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Torsion-simple objects in abelian categories\",\"authors\":\"Sergio Pavon\",\"doi\":\"10.1016/j.jpaa.2024.107818\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We introduce the notion of torsion-simple objects in an abelian category: these are the objects which are always either torsion or torsion-free with respect to any torsion pair. We present some general results concerning their properties, and then proceed to investigate the notion in various contexts, such as the category of modules over an artin algebra or a commutative noetherian ring, and the category of quasi-coherent sheaves over the projective line.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924002159\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002159","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们介绍了无阶梯范畴中扭转简单对象的概念:这些对象对于任何扭转对来说总是要么有扭转要么无扭转的。我们提出了一些有关其性质的一般结果,然后在不同的背景下研究了这一概念,例如阿尔金代数或交换诺特环上的模块范畴,以及投影线上的准相干剪切范畴。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Torsion-simple objects in abelian categories
We introduce the notion of torsion-simple objects in an abelian category: these are the objects which are always either torsion or torsion-free with respect to any torsion pair. We present some general results concerning their properties, and then proceed to investigate the notion in various contexts, such as the category of modules over an artin algebra or a commutative noetherian ring, and the category of quasi-coherent sheaves over the projective line.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信