{"title":"兼容的弱因式分解系统和模型结构","authors":"Zhenxing Di , Liping Li , Li Liang","doi":"10.1016/j.jpaa.2024.107821","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, the concept of compatible weak factorization systems in general categories is introduced as a counterpart of compatible complete cotorsion pairs in abelian categories. We describe a method to construct model structures on general categories via two compatible weak factorization systems satisfying certain conditions, and hence, generalize a very useful result by Gillespie for abelian model structures. As particular examples, we show that weak factorization systems associated to some classical model structures (for example, the Kan-Quillen model structure on <span><math><mi>sSet</mi></math></span>) satisfy these conditions.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Compatible weak factorization systems and model structures\",\"authors\":\"Zhenxing Di , Liping Li , Li Liang\",\"doi\":\"10.1016/j.jpaa.2024.107821\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, the concept of compatible weak factorization systems in general categories is introduced as a counterpart of compatible complete cotorsion pairs in abelian categories. We describe a method to construct model structures on general categories via two compatible weak factorization systems satisfying certain conditions, and hence, generalize a very useful result by Gillespie for abelian model structures. As particular examples, we show that weak factorization systems associated to some classical model structures (for example, the Kan-Quillen model structure on <span><math><mi>sSet</mi></math></span>) satisfy these conditions.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924002184\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002184","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Compatible weak factorization systems and model structures
In this paper, the concept of compatible weak factorization systems in general categories is introduced as a counterpart of compatible complete cotorsion pairs in abelian categories. We describe a method to construct model structures on general categories via two compatible weak factorization systems satisfying certain conditions, and hence, generalize a very useful result by Gillespie for abelian model structures. As particular examples, we show that weak factorization systems associated to some classical model structures (for example, the Kan-Quillen model structure on ) satisfy these conditions.
期刊介绍:
The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.