通过机器学习对可持续航空燃料生产途径进行技术经济不确定性分析

IF 5.5 Q1 ENGINEERING, CHEMICAL
Chao Wu , Yuxi Wang , Ling Tao
{"title":"通过机器学习对可持续航空燃料生产途径进行技术经济不确定性分析","authors":"Chao Wu ,&nbsp;Yuxi Wang ,&nbsp;Ling Tao","doi":"10.1016/j.ceja.2024.100650","DOIUrl":null,"url":null,"abstract":"<div><div>Stochastic techno-economic analysis (TEA) is pivotal in assessing the financial viability and risks inherent in biofuel production processes. In this method, the Monte Carlo approach entails the random sampling of input variables and multiple runs of the TEA model to create probability distributions of economic metrics. However, traditional Monte Carlo TEA, reliant on iterative calls to process simulation, is resource-intensive and time-consuming, hindering widespread adoption. To address these challenges, we present an accessible framework that harnesses machine learning methods to estimate techno-economic uncertainty in biofuel production pathways. Our approach streamlines the conventional simulation process by automating dataset generation and machine learning model training. These trained models enable rapid predictions of minimum fuel selling prices at any scale, accommodating randomized input variables based on their defined distributions. We illustrate the efficacy of our framework through examples from sustainable aviation fuel production pathways. Our research entails identifying the primary factors influencing uncertainties in minimum selling prices, exploring the synergistic effects of pathway inputs, and assessing how price variability is impacted by financial, technical, and supply chain factors. These examples underscore the framework's effectiveness in addressing breakeven price uncertainties in biofuel production across diverse input scenarios.</div></div>","PeriodicalId":9749,"journal":{"name":"Chemical Engineering Journal Advances","volume":"20 ","pages":"Article 100650"},"PeriodicalIF":5.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-enabled techno-economic uncertainty analysis of sustainable aviation fuel production pathways\",\"authors\":\"Chao Wu ,&nbsp;Yuxi Wang ,&nbsp;Ling Tao\",\"doi\":\"10.1016/j.ceja.2024.100650\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Stochastic techno-economic analysis (TEA) is pivotal in assessing the financial viability and risks inherent in biofuel production processes. In this method, the Monte Carlo approach entails the random sampling of input variables and multiple runs of the TEA model to create probability distributions of economic metrics. However, traditional Monte Carlo TEA, reliant on iterative calls to process simulation, is resource-intensive and time-consuming, hindering widespread adoption. To address these challenges, we present an accessible framework that harnesses machine learning methods to estimate techno-economic uncertainty in biofuel production pathways. Our approach streamlines the conventional simulation process by automating dataset generation and machine learning model training. These trained models enable rapid predictions of minimum fuel selling prices at any scale, accommodating randomized input variables based on their defined distributions. We illustrate the efficacy of our framework through examples from sustainable aviation fuel production pathways. Our research entails identifying the primary factors influencing uncertainties in minimum selling prices, exploring the synergistic effects of pathway inputs, and assessing how price variability is impacted by financial, technical, and supply chain factors. These examples underscore the framework's effectiveness in addressing breakeven price uncertainties in biofuel production across diverse input scenarios.</div></div>\",\"PeriodicalId\":9749,\"journal\":{\"name\":\"Chemical Engineering Journal Advances\",\"volume\":\"20 \",\"pages\":\"Article 100650\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Engineering Journal Advances\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S266682112400067X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Engineering Journal Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S266682112400067X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

随机技术经济分析(TEA)在评估生物燃料生产过程的财务可行性和固有风险方面至关重要。在这种方法中,蒙特卡罗方法需要对输入变量进行随机抽样,并多次运行 TEA 模型,以创建经济指标的概率分布。然而,传统的蒙特卡罗 TEA 依赖于迭代调用流程模拟,资源密集且耗时,阻碍了其广泛应用。为了应对这些挑战,我们提出了一个利用机器学习方法估算生物燃料生产路径中技术经济不确定性的便捷框架。我们的方法通过自动生成数据集和训练机器学习模型,简化了传统的模拟过程。这些训练有素的模型能够快速预测任何规模下的最低燃料销售价格,并根据定义的分布适应随机输入变量。我们通过可持续航空燃料生产途径的实例来说明我们框架的功效。我们的研究需要确定影响最低销售价格不确定性的主要因素,探索途径输入的协同效应,并评估价格变化如何受到金融、技术和供应链因素的影响。这些例子证明了该框架在解决不同投入情景下生物燃料生产的盈亏平衡价格不确定性方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-enabled techno-economic uncertainty analysis of sustainable aviation fuel production pathways
Stochastic techno-economic analysis (TEA) is pivotal in assessing the financial viability and risks inherent in biofuel production processes. In this method, the Monte Carlo approach entails the random sampling of input variables and multiple runs of the TEA model to create probability distributions of economic metrics. However, traditional Monte Carlo TEA, reliant on iterative calls to process simulation, is resource-intensive and time-consuming, hindering widespread adoption. To address these challenges, we present an accessible framework that harnesses machine learning methods to estimate techno-economic uncertainty in biofuel production pathways. Our approach streamlines the conventional simulation process by automating dataset generation and machine learning model training. These trained models enable rapid predictions of minimum fuel selling prices at any scale, accommodating randomized input variables based on their defined distributions. We illustrate the efficacy of our framework through examples from sustainable aviation fuel production pathways. Our research entails identifying the primary factors influencing uncertainties in minimum selling prices, exploring the synergistic effects of pathway inputs, and assessing how price variability is impacted by financial, technical, and supply chain factors. These examples underscore the framework's effectiveness in addressing breakeven price uncertainties in biofuel production across diverse input scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Engineering Journal Advances
Chemical Engineering Journal Advances Engineering-Industrial and Manufacturing Engineering
CiteScore
8.30
自引率
0.00%
发文量
213
审稿时长
26 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信