Guojie Hu , Lin Zhao , Defu Zou , Xiaodong Wu , Ren Li , Xiaofan Zhu , Youqi Su , Tonghua Wu , Yifan Wu , Jie Ni
{"title":"北半球永冻土退化的巨大差异","authors":"Guojie Hu , Lin Zhao , Defu Zou , Xiaodong Wu , Ren Li , Xiaofan Zhu , Youqi Su , Tonghua Wu , Yifan Wu , Jie Ni","doi":"10.1016/j.catena.2024.108440","DOIUrl":null,"url":null,"abstract":"<div><div>Permafrost in the Northern Hemisphere has been degrading under climate change, affecting climatic, hydrological, and ecological systems. To reveal the temporal and spatial characteristics of permafrost degradation under climate change, we quantified permafrost thermal states and active layer thicknesses using observational data covering various periods and different areas of the Northern Hemisphere. The soil temperatures at 20 cm depth in the circumpolar Arctic permafrost regions were much lower than in the Qinghai-Tibet Plateau. The thaw period is 114 days in the circumpolar permafrost regions compared to 167 days in the Qinghai-Tibet Plateau. The active layer thickness (ALT) was largest in transitional permafrost regions and sporadic permafrost regions, and lowest in the high latitude permafrost regions and continuous permafrost regions, and the ALT generally exhibited an increasing trend. The average ALT was 1.7 m, and increased by 3.6 cm per year in the Northern Hemisphere. The mean annual ground temperature (MAGT) was largest in the high-altitude permafrost regions and isolated permafrost regions, and lowest in the high latitude permafrost regions and continuous permafrost regions. The warming rate of the MAGT was largest in the high latitude regions and lowest in the high altitude regions, and gradually increased from isolated permafrost regions to continuous permafrost regions, with an average warming rate of 0.3 °C per decade for the whole Northern Hemisphere. These findings provide important information for understanding the variability in permafrost degradation processes across different regions under climate change.</div></div>","PeriodicalId":9801,"journal":{"name":"Catena","volume":null,"pages":null},"PeriodicalIF":5.4000,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large variability in permafrost degradation over the Northern Hemisphere\",\"authors\":\"Guojie Hu , Lin Zhao , Defu Zou , Xiaodong Wu , Ren Li , Xiaofan Zhu , Youqi Su , Tonghua Wu , Yifan Wu , Jie Ni\",\"doi\":\"10.1016/j.catena.2024.108440\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Permafrost in the Northern Hemisphere has been degrading under climate change, affecting climatic, hydrological, and ecological systems. To reveal the temporal and spatial characteristics of permafrost degradation under climate change, we quantified permafrost thermal states and active layer thicknesses using observational data covering various periods and different areas of the Northern Hemisphere. The soil temperatures at 20 cm depth in the circumpolar Arctic permafrost regions were much lower than in the Qinghai-Tibet Plateau. The thaw period is 114 days in the circumpolar permafrost regions compared to 167 days in the Qinghai-Tibet Plateau. The active layer thickness (ALT) was largest in transitional permafrost regions and sporadic permafrost regions, and lowest in the high latitude permafrost regions and continuous permafrost regions, and the ALT generally exhibited an increasing trend. The average ALT was 1.7 m, and increased by 3.6 cm per year in the Northern Hemisphere. The mean annual ground temperature (MAGT) was largest in the high-altitude permafrost regions and isolated permafrost regions, and lowest in the high latitude permafrost regions and continuous permafrost regions. The warming rate of the MAGT was largest in the high latitude regions and lowest in the high altitude regions, and gradually increased from isolated permafrost regions to continuous permafrost regions, with an average warming rate of 0.3 °C per decade for the whole Northern Hemisphere. These findings provide important information for understanding the variability in permafrost degradation processes across different regions under climate change.</div></div>\",\"PeriodicalId\":9801,\"journal\":{\"name\":\"Catena\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-10-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Catena\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0341816224006374\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Catena","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0341816224006374","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
Large variability in permafrost degradation over the Northern Hemisphere
Permafrost in the Northern Hemisphere has been degrading under climate change, affecting climatic, hydrological, and ecological systems. To reveal the temporal and spatial characteristics of permafrost degradation under climate change, we quantified permafrost thermal states and active layer thicknesses using observational data covering various periods and different areas of the Northern Hemisphere. The soil temperatures at 20 cm depth in the circumpolar Arctic permafrost regions were much lower than in the Qinghai-Tibet Plateau. The thaw period is 114 days in the circumpolar permafrost regions compared to 167 days in the Qinghai-Tibet Plateau. The active layer thickness (ALT) was largest in transitional permafrost regions and sporadic permafrost regions, and lowest in the high latitude permafrost regions and continuous permafrost regions, and the ALT generally exhibited an increasing trend. The average ALT was 1.7 m, and increased by 3.6 cm per year in the Northern Hemisphere. The mean annual ground temperature (MAGT) was largest in the high-altitude permafrost regions and isolated permafrost regions, and lowest in the high latitude permafrost regions and continuous permafrost regions. The warming rate of the MAGT was largest in the high latitude regions and lowest in the high altitude regions, and gradually increased from isolated permafrost regions to continuous permafrost regions, with an average warming rate of 0.3 °C per decade for the whole Northern Hemisphere. These findings provide important information for understanding the variability in permafrost degradation processes across different regions under climate change.
期刊介绍:
Catena publishes papers describing original field and laboratory investigations and reviews on geoecology and landscape evolution with emphasis on interdisciplinary aspects of soil science, hydrology and geomorphology. It aims to disseminate new knowledge and foster better understanding of the physical environment, of evolutionary sequences that have resulted in past and current landscapes, and of the natural processes that are likely to determine the fate of our terrestrial environment.
Papers within any one of the above topics are welcome provided they are of sufficiently wide interest and relevance.