InGaAs/InP 雪崩光电二极管集成负反馈电阻器的设计与制造

IF 3.1 3区 物理与天体物理 Q2 INSTRUMENTS & INSTRUMENTATION
Yiwei He , Chunlei Yu , Yizhen Yu , Jingxian Bao , Bo Yang , Xue Li
{"title":"InGaAs/InP 雪崩光电二极管集成负反馈电阻器的设计与制造","authors":"Yiwei He ,&nbsp;Chunlei Yu ,&nbsp;Yizhen Yu ,&nbsp;Jingxian Bao ,&nbsp;Bo Yang ,&nbsp;Xue Li","doi":"10.1016/j.infrared.2024.105566","DOIUrl":null,"url":null,"abstract":"<div><div>The serial resistor of alloy material can be integrated on negative feedback avalanche diodes to reduce afterpulsing effect. In this work, the influence of parasitic capacitance on the avalanche quenching resistor was theoretically analyzed. By using simulation model of device &amp; circuit mixed-mode, the quenching capability of integrated resistors was evaluated with the parasitic parameters. For the material growth of feedback quenching resistor, thin film based on CrSi alloy was prepared by ion beam sputtering process, realizing the sheet resistance of 3 kΩ/square. The resistor material were sufficiently investigated by characterizing the morphology and element component. CrSi pattern of spiral shape was fabricated on sapphire substrate, realizing a resistor of the order of 500 kΩ in area of diameter 40 μm, which was equivalent to the active area of avalanche diodes. The electrical measurement indicated the excellent temperature stability of this integrated resistor, showing the promising application prospect for preparing high-performance negative feedback avalanche diodes.</div></div>","PeriodicalId":13549,"journal":{"name":"Infrared Physics & Technology","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and fabrication of integrated negative feedback resistor for InGaAs/InP avalanche photodiode\",\"authors\":\"Yiwei He ,&nbsp;Chunlei Yu ,&nbsp;Yizhen Yu ,&nbsp;Jingxian Bao ,&nbsp;Bo Yang ,&nbsp;Xue Li\",\"doi\":\"10.1016/j.infrared.2024.105566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The serial resistor of alloy material can be integrated on negative feedback avalanche diodes to reduce afterpulsing effect. In this work, the influence of parasitic capacitance on the avalanche quenching resistor was theoretically analyzed. By using simulation model of device &amp; circuit mixed-mode, the quenching capability of integrated resistors was evaluated with the parasitic parameters. For the material growth of feedback quenching resistor, thin film based on CrSi alloy was prepared by ion beam sputtering process, realizing the sheet resistance of 3 kΩ/square. The resistor material were sufficiently investigated by characterizing the morphology and element component. CrSi pattern of spiral shape was fabricated on sapphire substrate, realizing a resistor of the order of 500 kΩ in area of diameter 40 μm, which was equivalent to the active area of avalanche diodes. The electrical measurement indicated the excellent temperature stability of this integrated resistor, showing the promising application prospect for preparing high-performance negative feedback avalanche diodes.</div></div>\",\"PeriodicalId\":13549,\"journal\":{\"name\":\"Infrared Physics & Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Infrared Physics & Technology\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S135044952400450X\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Infrared Physics & Technology","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S135044952400450X","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

在负反馈雪崩二极管上可集成合金材料的串联电阻,以减少余脉冲效应。本文从理论上分析了寄生电容对雪崩淬火电阻的影响。通过使用器件& 电路混合模式的仿真模型,评估了寄生参数对集成电阻器淬火能力的影响。在反馈淬火电阻的材料生长方面,采用离子束溅射工艺制备了基于铬硅合金的薄膜,实现了 3 kΩ/square 的片电阻。通过表征形貌和元素成分,对电阻材料进行了充分研究。在蓝宝石衬底上制作了螺旋形状的铬硅图案,在直径为 40 μm 的面积上实现了 500 kΩ 的电阻,相当于雪崩二极管的有效面积。电学测量表明,这种集成电阻器具有出色的温度稳定性,为制备高性能负反馈雪崩二极管提供了广阔的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Design and fabrication of integrated negative feedback resistor for InGaAs/InP avalanche photodiode
The serial resistor of alloy material can be integrated on negative feedback avalanche diodes to reduce afterpulsing effect. In this work, the influence of parasitic capacitance on the avalanche quenching resistor was theoretically analyzed. By using simulation model of device & circuit mixed-mode, the quenching capability of integrated resistors was evaluated with the parasitic parameters. For the material growth of feedback quenching resistor, thin film based on CrSi alloy was prepared by ion beam sputtering process, realizing the sheet resistance of 3 kΩ/square. The resistor material were sufficiently investigated by characterizing the morphology and element component. CrSi pattern of spiral shape was fabricated on sapphire substrate, realizing a resistor of the order of 500 kΩ in area of diameter 40 μm, which was equivalent to the active area of avalanche diodes. The electrical measurement indicated the excellent temperature stability of this integrated resistor, showing the promising application prospect for preparing high-performance negative feedback avalanche diodes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.70
自引率
12.10%
发文量
400
审稿时长
67 days
期刊介绍: The Journal covers the entire field of infrared physics and technology: theory, experiment, application, devices and instrumentation. Infrared'' is defined as covering the near, mid and far infrared (terahertz) regions from 0.75um (750nm) to 1mm (300GHz.) Submissions in the 300GHz to 100GHz region may be accepted at the editors discretion if their content is relevant to shorter wavelengths. Submissions must be primarily concerned with and directly relevant to this spectral region. Its core topics can be summarized as the generation, propagation and detection, of infrared radiation; the associated optics, materials and devices; and its use in all fields of science, industry, engineering and medicine. Infrared techniques occur in many different fields, notably spectroscopy and interferometry; material characterization and processing; atmospheric physics, astronomy and space research. Scientific aspects include lasers, quantum optics, quantum electronics, image processing and semiconductor physics. Some important applications are medical diagnostics and treatment, industrial inspection and environmental monitoring.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信