研究基于红外热成像技术的快速疲劳表征添加式制造压缩成型短纤维热塑性复合材料的方法

IF 6.3 2区 材料科学 Q1 MATERIALS SCIENCE, COMPOSITES
P. Pathak , S. Gururaja , V. Kumar , D. Nuttall , A. Mahmoudi , M.M. Khonsari , U. Vaidya
{"title":"研究基于红外热成像技术的快速疲劳表征添加式制造压缩成型短纤维热塑性复合材料的方法","authors":"P. Pathak ,&nbsp;S. Gururaja ,&nbsp;V. Kumar ,&nbsp;D. Nuttall ,&nbsp;A. Mahmoudi ,&nbsp;M.M. Khonsari ,&nbsp;U. Vaidya","doi":"10.1016/j.compstruct.2024.118610","DOIUrl":null,"url":null,"abstract":"<div><div>A novel additive manufacturing (AM) methodology combined with a compression molding (CM) process has been previously developed to optimize the microstructure of short fiber thermoplastic (SFTs) composites with higher fiber alignment and lower porosity, yielding superior stiffness, strength, and structural integrity. The current work examines the efficacy of the ‘passive’ infrared thermography (IRT) techniques for rapid fatigue characterization of SFTs that use the surface temperature evolution during cyclic loading due to self-heating as a fatigue indicator. A comparison of fatigue limits obtained from traditional stress-life (SN) (<span><math><mrow><mo>≈</mo><mn>53</mn><mo>.</mo><mn>1</mn><mtext>%</mtext><msub><mrow><mi>σ</mi></mrow><mrow><mi>u</mi><mi>t</mi><mi>s</mi></mrow></msub></mrow></math></span>) and IRT (<span><math><mrow><mo>≈</mo><mn>54</mn><mo>.</mo><mn>1</mn><mtext>%</mtext><msub><mrow><mi>σ</mi></mrow><mrow><mi>u</mi><mi>t</mi><mi>s</mi></mrow></msub></mrow></math></span>) shows a close match. However, the SN curve required 18 specimens and two weeks of continuous cyclic testing, while IRT used three specimens with 5 h of testing. Thus, the IRT approach provides an accelerated testing framework for rapidly estimating the fatigue limit. Additionally, existing phenomenological approaches to IRT fatigue characterization have been examined.</div></div>","PeriodicalId":281,"journal":{"name":"Composite Structures","volume":"351 ","pages":"Article 118610"},"PeriodicalIF":6.3000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining infrared thermography based approaches to rapid fatigue characterization of additively manufactured compression molded short fiber thermoplastic composites\",\"authors\":\"P. Pathak ,&nbsp;S. Gururaja ,&nbsp;V. Kumar ,&nbsp;D. Nuttall ,&nbsp;A. Mahmoudi ,&nbsp;M.M. Khonsari ,&nbsp;U. Vaidya\",\"doi\":\"10.1016/j.compstruct.2024.118610\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A novel additive manufacturing (AM) methodology combined with a compression molding (CM) process has been previously developed to optimize the microstructure of short fiber thermoplastic (SFTs) composites with higher fiber alignment and lower porosity, yielding superior stiffness, strength, and structural integrity. The current work examines the efficacy of the ‘passive’ infrared thermography (IRT) techniques for rapid fatigue characterization of SFTs that use the surface temperature evolution during cyclic loading due to self-heating as a fatigue indicator. A comparison of fatigue limits obtained from traditional stress-life (SN) (<span><math><mrow><mo>≈</mo><mn>53</mn><mo>.</mo><mn>1</mn><mtext>%</mtext><msub><mrow><mi>σ</mi></mrow><mrow><mi>u</mi><mi>t</mi><mi>s</mi></mrow></msub></mrow></math></span>) and IRT (<span><math><mrow><mo>≈</mo><mn>54</mn><mo>.</mo><mn>1</mn><mtext>%</mtext><msub><mrow><mi>σ</mi></mrow><mrow><mi>u</mi><mi>t</mi><mi>s</mi></mrow></msub></mrow></math></span>) shows a close match. However, the SN curve required 18 specimens and two weeks of continuous cyclic testing, while IRT used three specimens with 5 h of testing. Thus, the IRT approach provides an accelerated testing framework for rapidly estimating the fatigue limit. Additionally, existing phenomenological approaches to IRT fatigue characterization have been examined.</div></div>\",\"PeriodicalId\":281,\"journal\":{\"name\":\"Composite Structures\",\"volume\":\"351 \",\"pages\":\"Article 118610\"},\"PeriodicalIF\":6.3000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Composite Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0263822324007384\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Composite Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0263822324007384","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 0

摘要

以前曾开发过一种与压缩成型(CM)工艺相结合的新型增材制造(AM)方法,用于优化短纤维热塑性塑料(SFT)复合材料的微观结构,使其具有更高的纤维排列度和更低的孔隙率,从而获得优异的刚度、强度和结构完整性。目前的工作研究了 "被动 "红外热成像(IRT)技术在 SFT 快速疲劳表征方面的功效,该技术使用循环加载期间由于自加热而产生的表面温度变化作为疲劳指标。通过比较传统应力寿命(SN)(≈53.1%σuts)和 IRT(≈54.1%σuts)获得的疲劳极限,结果显示两者非常接近。不过,SN 曲线需要 18 个试样和两周的连续循环测试,而 IRT 只需要 3 个试样和 5 小时的测试。因此,IRT 方法为快速估算疲劳极限提供了一个加速测试框架。此外,我们还研究了 IRT 疲劳表征的现有现象学方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examining infrared thermography based approaches to rapid fatigue characterization of additively manufactured compression molded short fiber thermoplastic composites
A novel additive manufacturing (AM) methodology combined with a compression molding (CM) process has been previously developed to optimize the microstructure of short fiber thermoplastic (SFTs) composites with higher fiber alignment and lower porosity, yielding superior stiffness, strength, and structural integrity. The current work examines the efficacy of the ‘passive’ infrared thermography (IRT) techniques for rapid fatigue characterization of SFTs that use the surface temperature evolution during cyclic loading due to self-heating as a fatigue indicator. A comparison of fatigue limits obtained from traditional stress-life (SN) (53.1%σuts) and IRT (54.1%σuts) shows a close match. However, the SN curve required 18 specimens and two weeks of continuous cyclic testing, while IRT used three specimens with 5 h of testing. Thus, the IRT approach provides an accelerated testing framework for rapidly estimating the fatigue limit. Additionally, existing phenomenological approaches to IRT fatigue characterization have been examined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Composite Structures
Composite Structures 工程技术-材料科学:复合
CiteScore
12.00
自引率
12.70%
发文量
1246
审稿时长
78 days
期刊介绍: The past few decades have seen outstanding advances in the use of composite materials in structural applications. There can be little doubt that, within engineering circles, composites have revolutionised traditional design concepts and made possible an unparalleled range of new and exciting possibilities as viable materials for construction. Composite Structures, an International Journal, disseminates knowledge between users, manufacturers, designers and researchers involved in structures or structural components manufactured using composite materials. The journal publishes papers which contribute to knowledge in the use of composite materials in engineering structures. Papers deal with design, research and development studies, experimental investigations, theoretical analysis and fabrication techniques relevant to the application of composites in load-bearing components for assemblies, ranging from individual components such as plates and shells to complete composite structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信