CMOS 兼容型等离子体磁场传感器:使用超紧凑 MIM 配置的替代方法

IF 2.5 3区 物理与天体物理 Q3 MATERIALS SCIENCE, MULTIDISCIPLINARY
Mohammad Ashraful Haque , Rummanur Rahad , Md. Omar Faruque , Abu S.M. Mohsin
{"title":"CMOS 兼容型等离子体磁场传感器:使用超紧凑 MIM 配置的替代方法","authors":"Mohammad Ashraful Haque ,&nbsp;Rummanur Rahad ,&nbsp;Md. Omar Faruque ,&nbsp;Abu S.M. Mohsin","doi":"10.1016/j.photonics.2024.101319","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel magnetic field sensor (MFS) that utilizes a metal-insulator-metal (MIM) waveguide integrated with a resonator structure and incorporates water-based Fe<sub>3</sub>O<sub>4</sub> magnetic fluid. The sensor uses titanium nitride (<em>TiN</em>) as the plasmonic material which offers numerous advantages over conventional noble plasmonic materials. The sensor takes advantage of the tunable optical properties of the magnetic fluid and <em>TiN</em> to detect changes in the external magnetic field and quantify the magnetic field strength which has been demonstrated using the Finite Element Method (FEM). Our proposed MFS exhibits a high sensitivity of 11.97 pm/Oe, a narrow-band full-width half maximum of 93.66 nm, and a resolution of 8.36 × 10<sup>−4</sup> Oe. The sensor is also compatible with complementary metal oxide semiconductor (CMOS) fabrication techniques, which enables chip-scale integration and low-cost production. The sensor can be used for various applications in navigation, military, space, healthcare, and beyond.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":"62 ","pages":"Article 101319"},"PeriodicalIF":2.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CMOS-compatible plasmonic magnetic field sensor: An alternative approach using ultra-compact MIM configuration\",\"authors\":\"Mohammad Ashraful Haque ,&nbsp;Rummanur Rahad ,&nbsp;Md. Omar Faruque ,&nbsp;Abu S.M. Mohsin\",\"doi\":\"10.1016/j.photonics.2024.101319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a novel magnetic field sensor (MFS) that utilizes a metal-insulator-metal (MIM) waveguide integrated with a resonator structure and incorporates water-based Fe<sub>3</sub>O<sub>4</sub> magnetic fluid. The sensor uses titanium nitride (<em>TiN</em>) as the plasmonic material which offers numerous advantages over conventional noble plasmonic materials. The sensor takes advantage of the tunable optical properties of the magnetic fluid and <em>TiN</em> to detect changes in the external magnetic field and quantify the magnetic field strength which has been demonstrated using the Finite Element Method (FEM). Our proposed MFS exhibits a high sensitivity of 11.97 pm/Oe, a narrow-band full-width half maximum of 93.66 nm, and a resolution of 8.36 × 10<sup>−4</sup> Oe. The sensor is also compatible with complementary metal oxide semiconductor (CMOS) fabrication techniques, which enables chip-scale integration and low-cost production. The sensor can be used for various applications in navigation, military, space, healthcare, and beyond.</div></div>\",\"PeriodicalId\":49699,\"journal\":{\"name\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"volume\":\"62 \",\"pages\":\"Article 101319\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569441024000944\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441024000944","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种新型磁场传感器(MFS),该传感器利用金属-绝缘体-金属(MIM)波导与谐振器结构集成,并加入了水基 Fe3O4 磁性流体。该传感器使用氮化钛(TiN)作为等离子材料,与传统的惰性等离子材料相比具有诸多优势。传感器利用磁性流体和氮化钛的可调光学特性来检测外部磁场的变化,并用有限元法(FEM)对磁场强度进行量化。我们提出的 MFS 具有 11.97 pm/Oe 的高灵敏度、93.66 nm 的窄带全宽半最大值和 8.36 × 10-4 Oe 的分辨率。该传感器还兼容互补金属氧化物半导体(CMOS)制造技术,实现了芯片级集成和低成本生产。该传感器可用于导航、军事、太空、医疗保健等领域的各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
CMOS-compatible plasmonic magnetic field sensor: An alternative approach using ultra-compact MIM configuration
This paper introduces a novel magnetic field sensor (MFS) that utilizes a metal-insulator-metal (MIM) waveguide integrated with a resonator structure and incorporates water-based Fe3O4 magnetic fluid. The sensor uses titanium nitride (TiN) as the plasmonic material which offers numerous advantages over conventional noble plasmonic materials. The sensor takes advantage of the tunable optical properties of the magnetic fluid and TiN to detect changes in the external magnetic field and quantify the magnetic field strength which has been demonstrated using the Finite Element Method (FEM). Our proposed MFS exhibits a high sensitivity of 11.97 pm/Oe, a narrow-band full-width half maximum of 93.66 nm, and a resolution of 8.36 × 10−4 Oe. The sensor is also compatible with complementary metal oxide semiconductor (CMOS) fabrication techniques, which enables chip-scale integration and low-cost production. The sensor can be used for various applications in navigation, military, space, healthcare, and beyond.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.70%
发文量
77
审稿时长
62 days
期刊介绍: This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信