{"title":"CMOS 兼容型等离子体磁场传感器:使用超紧凑 MIM 配置的替代方法","authors":"","doi":"10.1016/j.photonics.2024.101319","DOIUrl":null,"url":null,"abstract":"<div><div>This paper introduces a novel magnetic field sensor (MFS) that utilizes a metal-insulator-metal (MIM) waveguide integrated with a resonator structure and incorporates water-based Fe<sub>3</sub>O<sub>4</sub> magnetic fluid. The sensor uses titanium nitride (<em>TiN</em>) as the plasmonic material which offers numerous advantages over conventional noble plasmonic materials. The sensor takes advantage of the tunable optical properties of the magnetic fluid and <em>TiN</em> to detect changes in the external magnetic field and quantify the magnetic field strength which has been demonstrated using the Finite Element Method (FEM). Our proposed MFS exhibits a high sensitivity of 11.97 pm/Oe, a narrow-band full-width half maximum of 93.66 nm, and a resolution of 8.36 × 10<sup>−4</sup> Oe. The sensor is also compatible with complementary metal oxide semiconductor (CMOS) fabrication techniques, which enables chip-scale integration and low-cost production. The sensor can be used for various applications in navigation, military, space, healthcare, and beyond.</div></div>","PeriodicalId":49699,"journal":{"name":"Photonics and Nanostructures-Fundamentals and Applications","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CMOS-compatible plasmonic magnetic field sensor: An alternative approach using ultra-compact MIM configuration\",\"authors\":\"\",\"doi\":\"10.1016/j.photonics.2024.101319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper introduces a novel magnetic field sensor (MFS) that utilizes a metal-insulator-metal (MIM) waveguide integrated with a resonator structure and incorporates water-based Fe<sub>3</sub>O<sub>4</sub> magnetic fluid. The sensor uses titanium nitride (<em>TiN</em>) as the plasmonic material which offers numerous advantages over conventional noble plasmonic materials. The sensor takes advantage of the tunable optical properties of the magnetic fluid and <em>TiN</em> to detect changes in the external magnetic field and quantify the magnetic field strength which has been demonstrated using the Finite Element Method (FEM). Our proposed MFS exhibits a high sensitivity of 11.97 pm/Oe, a narrow-band full-width half maximum of 93.66 nm, and a resolution of 8.36 × 10<sup>−4</sup> Oe. The sensor is also compatible with complementary metal oxide semiconductor (CMOS) fabrication techniques, which enables chip-scale integration and low-cost production. The sensor can be used for various applications in navigation, military, space, healthcare, and beyond.</div></div>\",\"PeriodicalId\":49699,\"journal\":{\"name\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photonics and Nanostructures-Fundamentals and Applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1569441024000944\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photonics and Nanostructures-Fundamentals and Applications","FirstCategoryId":"101","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1569441024000944","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
CMOS-compatible plasmonic magnetic field sensor: An alternative approach using ultra-compact MIM configuration
This paper introduces a novel magnetic field sensor (MFS) that utilizes a metal-insulator-metal (MIM) waveguide integrated with a resonator structure and incorporates water-based Fe3O4 magnetic fluid. The sensor uses titanium nitride (TiN) as the plasmonic material which offers numerous advantages over conventional noble plasmonic materials. The sensor takes advantage of the tunable optical properties of the magnetic fluid and TiN to detect changes in the external magnetic field and quantify the magnetic field strength which has been demonstrated using the Finite Element Method (FEM). Our proposed MFS exhibits a high sensitivity of 11.97 pm/Oe, a narrow-band full-width half maximum of 93.66 nm, and a resolution of 8.36 × 10−4 Oe. The sensor is also compatible with complementary metal oxide semiconductor (CMOS) fabrication techniques, which enables chip-scale integration and low-cost production. The sensor can be used for various applications in navigation, military, space, healthcare, and beyond.
期刊介绍:
This journal establishes a dedicated channel for physicists, material scientists, chemists, engineers and computer scientists who are interested in photonics and nanostructures, and especially in research related to photonic crystals, photonic band gaps and metamaterials. The Journal sheds light on the latest developments in this growing field of science that will see the emergence of faster telecommunications and ultimately computers that use light instead of electrons to connect components.