THH 上的五月过滤和忠实的平缓下降

IF 0.7 2区 数学 Q2 MATHEMATICS
Liam Keenan
{"title":"THH 上的五月过滤和忠实的平缓下降","authors":"Liam Keenan","doi":"10.1016/j.jpaa.2024.107806","DOIUrl":null,"url":null,"abstract":"<div><div>In this article, we study descent properties of topological Hochschild homology and topological cyclic homology. In particular, we verify that both of these invariants satisfy faithfully flat descent and 1-connective descent for connective <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-ring spectra. This generalizes a result of Bhatt–Morrow–Scholze from <span><span>[6]</span></span> and a result of Dundas–Rognes from <span><span>[11]</span></span>, respectively. Along the way, we develop some basic theory for cobar constructions and give an alternative presentation of the May filtration on topological Hochschild homology, originally due to Angelini-Knoll–Salch <span><span>[3]</span></span>.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The May filtration on THH and faithfully flat descent\",\"authors\":\"Liam Keenan\",\"doi\":\"10.1016/j.jpaa.2024.107806\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this article, we study descent properties of topological Hochschild homology and topological cyclic homology. In particular, we verify that both of these invariants satisfy faithfully flat descent and 1-connective descent for connective <span><math><msub><mrow><mi>E</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>-ring spectra. This generalizes a result of Bhatt–Morrow–Scholze from <span><span>[6]</span></span> and a result of Dundas–Rognes from <span><span>[11]</span></span>, respectively. Along the way, we develop some basic theory for cobar constructions and give an alternative presentation of the May filtration on topological Hochschild homology, originally due to Angelini-Knoll–Salch <span><span>[3]</span></span>.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924002032\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002032","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了拓扑霍赫希尔德同调和拓扑循环同调的下降性质。特别是,我们验证了这两个不变式都满足连通 E2 环谱的忠实平坦下降和 1-connective 下降。这分别推广了[6]中 Bhatt-Morrow-Scholze 的一个结果和[11]中 Dundas-Rognes 的一个结果。在此过程中,我们发展了一些关于科巴构造的基本理论,并给出了拓扑霍赫希尔德同调的梅滤波的另一种表述,该表述最初是由 Angelini-Knoll-Salch [3] 提出的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The May filtration on THH and faithfully flat descent
In this article, we study descent properties of topological Hochschild homology and topological cyclic homology. In particular, we verify that both of these invariants satisfy faithfully flat descent and 1-connective descent for connective E2-ring spectra. This generalizes a result of Bhatt–Morrow–Scholze from [6] and a result of Dundas–Rognes from [11], respectively. Along the way, we develop some basic theory for cobar constructions and give an alternative presentation of the May filtration on topological Hochschild homology, originally due to Angelini-Knoll–Salch [3].
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信