高斯对偶闵科夫斯基问题解的存在性

IF 2.4 2区 数学 Q1 MATHEMATICS
Yibin Feng , Yuanyuan Li , Lei Xu
{"title":"高斯对偶闵科夫斯基问题解的存在性","authors":"Yibin Feng ,&nbsp;Yuanyuan Li ,&nbsp;Lei Xu","doi":"10.1016/j.jde.2024.09.050","DOIUrl":null,"url":null,"abstract":"<div><div>Gaussian dual curvature measure is introduced and Gaussian dual Minkowski problem is studied. This problem amounts to solving a class of Monge-Ampère type equations on the unit sphere. Existence and uniqueness of solutions to the relevant Monge-Ampère type equations are obtained in the smooth category when <span><math><mi>q</mi><mo>≤</mo><mn>0</mn></math></span>, respectively. For <span><math><mi>q</mi><mo>&lt;</mo><mn>0</mn></math></span>, a complete solution to existence part of the Gaussian dual Minkowski problem is presented. For the case of <span><math><mi>q</mi><mo>=</mo><mn>0</mn></math></span>, a weak solution to the Monge-Ampère type equation related to this problem is provided when given measure has the density <em>f</em> which is sandwiched between two positive constants belonging to the interval 0 to 1.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence of solutions to the Gaussian dual Minkowski problem\",\"authors\":\"Yibin Feng ,&nbsp;Yuanyuan Li ,&nbsp;Lei Xu\",\"doi\":\"10.1016/j.jde.2024.09.050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Gaussian dual curvature measure is introduced and Gaussian dual Minkowski problem is studied. This problem amounts to solving a class of Monge-Ampère type equations on the unit sphere. Existence and uniqueness of solutions to the relevant Monge-Ampère type equations are obtained in the smooth category when <span><math><mi>q</mi><mo>≤</mo><mn>0</mn></math></span>, respectively. For <span><math><mi>q</mi><mo>&lt;</mo><mn>0</mn></math></span>, a complete solution to existence part of the Gaussian dual Minkowski problem is presented. For the case of <span><math><mi>q</mi><mo>=</mo><mn>0</mn></math></span>, a weak solution to the Monge-Ampère type equation related to this problem is provided when given measure has the density <em>f</em> which is sandwiched between two positive constants belonging to the interval 0 to 1.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006351\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006351","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

引入了高斯对偶曲率量,并研究了高斯对偶闵科夫斯基问题。这个问题相当于求解单位球面上的一类蒙日-安培方程。在光滑范畴中,当 q≤0 时,分别得到了相关 Monge-Ampère 型方程解的存在性和唯一性。对于 q<0,提出了高斯对偶闵科夫斯基问题存在性部分的完整解。对于 q=0 的情况,当给定度量的密度 f 夹在属于区间 0 到 1 的两个正常数之间时,提供了与该问题相关的蒙日-安培类型方程的弱解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence of solutions to the Gaussian dual Minkowski problem
Gaussian dual curvature measure is introduced and Gaussian dual Minkowski problem is studied. This problem amounts to solving a class of Monge-Ampère type equations on the unit sphere. Existence and uniqueness of solutions to the relevant Monge-Ampère type equations are obtained in the smooth category when q0, respectively. For q<0, a complete solution to existence part of the Gaussian dual Minkowski problem is presented. For the case of q=0, a weak solution to the Monge-Ampère type equation related to this problem is provided when given measure has the density f which is sandwiched between two positive constants belonging to the interval 0 to 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信