波状矢量场的正则拉格朗日流和弗拉索夫-麦克斯韦系统

IF 2.4 2区 数学 Q1 MATHEMATICS
Henrique Borrin
{"title":"波状矢量场的正则拉格朗日流和弗拉索夫-麦克斯韦系统","authors":"Henrique Borrin","doi":"10.1016/j.jde.2024.09.051","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we study the Lagrangian structure of Vlasov-Maxwell system, that is, by using a suitable notion of flow, we prove that if the densities <span><math><mi>ρ</mi><mo>,</mo><mspace></mspace><mi>j</mi></math></span> are integrable in spacetime, and the charge acceleration <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>j</mi></math></span> and <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mi>j</mi></math></span> (or <span><math><mi>∇</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>j</mi></math></span>) are integrable functions in spacetime, then renormalized and distributional solutions of the system are the transport of the initial condition by its flow. We study more general vector fields, with wavelike structure in the sense that it has finite speed of propagation, generalizing the vector fields studied in <span><span>[6]</span></span>. The result is a extension of those obtained by Ambrosio, Colombo, and Figalli <span><span>[2]</span></span> for the Vlasov-Poisson system, and by the author and Marcon <span><span>[5]</span></span> for relativistic Vlasov-systems with quasistatic approximations of Maxwell's equations.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 190-226"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Regular Lagrangian flow for wavelike vector fields and the Vlasov-Maxwell system\",\"authors\":\"Henrique Borrin\",\"doi\":\"10.1016/j.jde.2024.09.051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we study the Lagrangian structure of Vlasov-Maxwell system, that is, by using a suitable notion of flow, we prove that if the densities <span><math><mi>ρ</mi><mo>,</mo><mspace></mspace><mi>j</mi></math></span> are integrable in spacetime, and the charge acceleration <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>j</mi></math></span> and <span><math><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi><mi>t</mi></mrow></msub><mi>j</mi></math></span> (or <span><math><mi>∇</mi><msub><mrow><mo>∂</mo></mrow><mrow><mi>t</mi></mrow></msub><mi>j</mi></math></span>) are integrable functions in spacetime, then renormalized and distributional solutions of the system are the transport of the initial condition by its flow. We study more general vector fields, with wavelike structure in the sense that it has finite speed of propagation, generalizing the vector fields studied in <span><span>[6]</span></span>. The result is a extension of those obtained by Ambrosio, Colombo, and Figalli <span><span>[2]</span></span> for the Vlasov-Poisson system, and by the author and Marcon <span><span>[5]</span></span> for relativistic Vlasov-systems with quasistatic approximations of Maxwell's equations.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 190-226\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006363\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006363","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了 Vlasov-Maxwell 系统的拉格朗日结构,即通过使用合适的流概念,证明如果密度 ρ,j 在时空中是可积分的,电荷加速度 ∂tj 和 ∂ttj (或 ∇∂tj)在时空中是可积分的函数,那么系统的重正化和分布解就是其流对初始条件的传输。我们研究的是更一般的矢量场,在传播速度有限的意义上具有波状结构,是对 [6] 中研究的矢量场的推广。这一结果是 Ambrosio、Colombo 和 Figalli [2] 对 Vlasov-Poisson 系统,以及作者和 Marcon [5] 对麦克斯韦方程准静态近似的相对论 Vlasov 系统所获得结果的扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Regular Lagrangian flow for wavelike vector fields and the Vlasov-Maxwell system
In this paper, we study the Lagrangian structure of Vlasov-Maxwell system, that is, by using a suitable notion of flow, we prove that if the densities ρ,j are integrable in spacetime, and the charge acceleration tj and ttj (or tj) are integrable functions in spacetime, then renormalized and distributional solutions of the system are the transport of the initial condition by its flow. We study more general vector fields, with wavelike structure in the sense that it has finite speed of propagation, generalizing the vector fields studied in [6]. The result is a extension of those obtained by Ambrosio, Colombo, and Figalli [2] for the Vlasov-Poisson system, and by the author and Marcon [5] for relativistic Vlasov-systems with quasistatic approximations of Maxwell's equations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信