Minbo Yang , Jefferson Abrantes , Pedro Ubilla , Jiazheng Zhou
{"title":"RN 中一个亚线性椭圆方程正解的全局多重性","authors":"Minbo Yang , Jefferson Abrantes , Pedro Ubilla , Jiazheng Zhou","doi":"10.1016/j.jde.2024.09.052","DOIUrl":null,"url":null,"abstract":"<div><div>We establish global multiplicity of positive solutions (existence and nonexistence theory) for the following problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>></mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>∈</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>λ</mi><mo>></mo><mn>0</mn></math></span> is a parameter, <span><math><mn>0</mn><mo>≤</mo><mi>h</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> and <em>f</em> is a sublinear nonlinearity at ∞. In order to obtain our results we use a combination of the sub- super solution method and variational techniques. For instance, we need to implement a relevant result of type <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> versus <em>X</em> local minimizer for some appropriate space <em>X</em>.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"416 ","pages":"Pages 159-189"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global multiplicity of positive solutions for a sublinear elliptic equation in RN\",\"authors\":\"Minbo Yang , Jefferson Abrantes , Pedro Ubilla , Jiazheng Zhou\",\"doi\":\"10.1016/j.jde.2024.09.052\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We establish global multiplicity of positive solutions (existence and nonexistence theory) for the following problem<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>λ</mi><mi>h</mi><mo>(</mo><mi>x</mi><mo>)</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>></mo><mn>0</mn><mspace></mspace><mtext>in</mtext><mspace></mspace><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>u</mi><mo>∈</mo><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mi>λ</mi><mo>></mo><mn>0</mn></math></span> is a parameter, <span><math><mn>0</mn><mo>≤</mo><mi>h</mi><mo>∈</mo><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> and <em>f</em> is a sublinear nonlinearity at ∞. In order to obtain our results we use a combination of the sub- super solution method and variational techniques. For instance, we need to implement a relevant result of type <span><math><msup><mrow><mi>D</mi></mrow><mrow><mn>1</mn><mo>,</mo><mn>2</mn></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo></math></span> versus <em>X</em> local minimizer for some appropriate space <em>X</em>.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"416 \",\"pages\":\"Pages 159-189\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006375\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006375","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
摘要
我们为以下问题建立了正解的全局多重性(存在与不存在理论){Δu+λh(x)f(u)=0inRN,u>0inRN,u∈D1,2(RN),其中 N≥3, λ>0 是参数,0≤h∈L∞(RN),f 是∞处的亚线性非线性。为了得到我们的结果,我们结合使用了次超解方法和变分技术。例如,我们需要在某个合适的空间 X 上实现 D1,2(RN) 对 X 局部最小化的相关结果。
Global multiplicity of positive solutions for a sublinear elliptic equation in RN
We establish global multiplicity of positive solutions (existence and nonexistence theory) for the following problem where , is a parameter, and f is a sublinear nonlinearity at ∞. In order to obtain our results we use a combination of the sub- super solution method and variational techniques. For instance, we need to implement a relevant result of type versus X local minimizer for some appropriate space X.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics