强耦合随机退化反应扩散系统的无效可控性

IF 1.2 3区 数学 Q1 MATHEMATICS
Lin Yan , Bin Wu
{"title":"强耦合随机退化反应扩散系统的无效可控性","authors":"Lin Yan ,&nbsp;Bin Wu","doi":"10.1016/j.jmaa.2024.128911","DOIUrl":null,"url":null,"abstract":"<div><div>This paper concerns the null controllability for a strongly coupled stochastic degenerate reaction-diffusion system in cardiac electrocardiology, which describes the electrical activity in the cardiac tissue with random effects. To deal with degeneracy of this system, we first consider an approximate problem of this coupled stochastic degenerate system. By a weighted identity method, we then prove a uniform Carleman estimate for the adjoint system of this approximate problem, which is a strongly coupled backward stochastic parabolic system with homogeneous Neumann boundary conditions. Based on this Carleman estimate and a limit process, we finally obtain the null controllability result.</div></div>","PeriodicalId":50147,"journal":{"name":"Journal of Mathematical Analysis and Applications","volume":"543 2","pages":"Article 128911"},"PeriodicalIF":1.2000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Null controllability for a strongly coupled stochastic degenerate reaction-diffusion system\",\"authors\":\"Lin Yan ,&nbsp;Bin Wu\",\"doi\":\"10.1016/j.jmaa.2024.128911\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper concerns the null controllability for a strongly coupled stochastic degenerate reaction-diffusion system in cardiac electrocardiology, which describes the electrical activity in the cardiac tissue with random effects. To deal with degeneracy of this system, we first consider an approximate problem of this coupled stochastic degenerate system. By a weighted identity method, we then prove a uniform Carleman estimate for the adjoint system of this approximate problem, which is a strongly coupled backward stochastic parabolic system with homogeneous Neumann boundary conditions. Based on this Carleman estimate and a limit process, we finally obtain the null controllability result.</div></div>\",\"PeriodicalId\":50147,\"journal\":{\"name\":\"Journal of Mathematical Analysis and Applications\",\"volume\":\"543 2\",\"pages\":\"Article 128911\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022247X24008333\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022247X24008333","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文涉及心脏电生理学中一个强耦合随机退化反应-扩散系统的空可控性,该系统描述了具有随机效应的心脏组织中的电活动。为了解决该系统的退化问题,我们首先考虑该耦合随机退化系统的近似问题。通过加权同一法,我们证明了这个近似问题的邻接系统的统一卡勒曼估计,该系统是一个具有同质诺伊曼边界条件的强耦合后向随机抛物线系统。基于这个卡勒曼估计和一个极限过程,我们最终得到了空可控性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Null controllability for a strongly coupled stochastic degenerate reaction-diffusion system
This paper concerns the null controllability for a strongly coupled stochastic degenerate reaction-diffusion system in cardiac electrocardiology, which describes the electrical activity in the cardiac tissue with random effects. To deal with degeneracy of this system, we first consider an approximate problem of this coupled stochastic degenerate system. By a weighted identity method, we then prove a uniform Carleman estimate for the adjoint system of this approximate problem, which is a strongly coupled backward stochastic parabolic system with homogeneous Neumann boundary conditions. Based on this Carleman estimate and a limit process, we finally obtain the null controllability result.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.50
自引率
7.70%
发文量
790
审稿时长
6 months
期刊介绍: The Journal of Mathematical Analysis and Applications presents papers that treat mathematical analysis and its numerous applications. The journal emphasizes articles devoted to the mathematical treatment of questions arising in physics, chemistry, biology, and engineering, particularly those that stress analytical aspects and novel problems and their solutions. Papers are sought which employ one or more of the following areas of classical analysis: • Analytic number theory • Functional analysis and operator theory • Real and harmonic analysis • Complex analysis • Numerical analysis • Applied mathematics • Partial differential equations • Dynamical systems • Control and Optimization • Probability • Mathematical biology • Combinatorics • Mathematical physics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信