{"title":"RP-Net:用于旋转不变人脸检测的鲁棒极坐标变换网络","authors":"Hathai Kaewkorn , Lifang Zhou , Weisheng Li","doi":"10.1016/j.patcog.2024.111044","DOIUrl":null,"url":null,"abstract":"<div><div>Face detection is challenging in unconstrained environments, where it encounters various challenges such as orientation, pose, and occlusion. Deep convolutional neural networks, particularly cascaded ones, have greatly improved detection performance but still struggle with rotating objects due to limitations in the Cartesian coordinate system. Although data augmentation can mitigate this issue, it also increases computational demands. This paper introduces the Robust Polar Transformation Network (RP-Net) for rotation-invariant face detection. RP-Net converts the complex rotational problem into a simpler translational one to enhance feature extraction and computational efficiency. Additionally, the Advanced Spatial-Channel Restoration (ASCR) module optimizes facial landmark detection within polar domains and restores critical details lost during transformation. Experimental results on benchmark datasets show that RP-Net significantly improves rotation invariance over traditional CNNs and surpasses several state-of-the-art rotation-invariant face detection methods.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"158 ","pages":"Article 111044"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RP-Net: A Robust Polar Transformation Network for rotation-invariant face detection\",\"authors\":\"Hathai Kaewkorn , Lifang Zhou , Weisheng Li\",\"doi\":\"10.1016/j.patcog.2024.111044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Face detection is challenging in unconstrained environments, where it encounters various challenges such as orientation, pose, and occlusion. Deep convolutional neural networks, particularly cascaded ones, have greatly improved detection performance but still struggle with rotating objects due to limitations in the Cartesian coordinate system. Although data augmentation can mitigate this issue, it also increases computational demands. This paper introduces the Robust Polar Transformation Network (RP-Net) for rotation-invariant face detection. RP-Net converts the complex rotational problem into a simpler translational one to enhance feature extraction and computational efficiency. Additionally, the Advanced Spatial-Channel Restoration (ASCR) module optimizes facial landmark detection within polar domains and restores critical details lost during transformation. Experimental results on benchmark datasets show that RP-Net significantly improves rotation invariance over traditional CNNs and surpasses several state-of-the-art rotation-invariant face detection methods.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"158 \",\"pages\":\"Article 111044\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320324007957\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324007957","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
RP-Net: A Robust Polar Transformation Network for rotation-invariant face detection
Face detection is challenging in unconstrained environments, where it encounters various challenges such as orientation, pose, and occlusion. Deep convolutional neural networks, particularly cascaded ones, have greatly improved detection performance but still struggle with rotating objects due to limitations in the Cartesian coordinate system. Although data augmentation can mitigate this issue, it also increases computational demands. This paper introduces the Robust Polar Transformation Network (RP-Net) for rotation-invariant face detection. RP-Net converts the complex rotational problem into a simpler translational one to enhance feature extraction and computational efficiency. Additionally, the Advanced Spatial-Channel Restoration (ASCR) module optimizes facial landmark detection within polar domains and restores critical details lost during transformation. Experimental results on benchmark datasets show that RP-Net significantly improves rotation invariance over traditional CNNs and surpasses several state-of-the-art rotation-invariant face detection methods.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.