{"title":"小波变换的 Donoho-Logan 大筛原理","authors":"Luís Daniel Abreu , Michael Speckbacher","doi":"10.1016/j.acha.2024.101709","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we formulate Donoho and Logan's large sieve principle for the wavelet transform on the Hardy space, adapting the concept of maximum Nyquist density to the hyperbolic geometry of the underlying space. The results provide deterministic guarantees for <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-minimization methods and hold for a class of mother wavelets that constitutes an orthonormal basis of the Hardy space and can be associated with higher hyperbolic Landau levels. Explicit calculations of the basis functions reveal a connection with the Zernike polynomials. We prove a novel local reproducing formula for the spaces in consideration and use it to derive concentration estimates of the large sieve type for the corresponding wavelet transforms. We conclude with a discussion of optimality of localization and Lieb inequalities in the analytic case by building on recent results of Kulikov, Ramos and Tilli based on the groundbreaking methods of Nicola and Tilli. This leads to a sharp uncertainty principle and a local Lieb inequality for the wavelet transform.</div></div>","PeriodicalId":55504,"journal":{"name":"Applied and Computational Harmonic Analysis","volume":"74 ","pages":"Article 101709"},"PeriodicalIF":2.6000,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Donoho-Logan large sieve principles for the wavelet transform\",\"authors\":\"Luís Daniel Abreu , Michael Speckbacher\",\"doi\":\"10.1016/j.acha.2024.101709\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we formulate Donoho and Logan's large sieve principle for the wavelet transform on the Hardy space, adapting the concept of maximum Nyquist density to the hyperbolic geometry of the underlying space. The results provide deterministic guarantees for <span><math><msub><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span>-minimization methods and hold for a class of mother wavelets that constitutes an orthonormal basis of the Hardy space and can be associated with higher hyperbolic Landau levels. Explicit calculations of the basis functions reveal a connection with the Zernike polynomials. We prove a novel local reproducing formula for the spaces in consideration and use it to derive concentration estimates of the large sieve type for the corresponding wavelet transforms. We conclude with a discussion of optimality of localization and Lieb inequalities in the analytic case by building on recent results of Kulikov, Ramos and Tilli based on the groundbreaking methods of Nicola and Tilli. This leads to a sharp uncertainty principle and a local Lieb inequality for the wavelet transform.</div></div>\",\"PeriodicalId\":55504,\"journal\":{\"name\":\"Applied and Computational Harmonic Analysis\",\"volume\":\"74 \",\"pages\":\"Article 101709\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied and Computational Harmonic Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1063520324000861\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied and Computational Harmonic Analysis","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1063520324000861","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Donoho-Logan large sieve principles for the wavelet transform
In this paper we formulate Donoho and Logan's large sieve principle for the wavelet transform on the Hardy space, adapting the concept of maximum Nyquist density to the hyperbolic geometry of the underlying space. The results provide deterministic guarantees for -minimization methods and hold for a class of mother wavelets that constitutes an orthonormal basis of the Hardy space and can be associated with higher hyperbolic Landau levels. Explicit calculations of the basis functions reveal a connection with the Zernike polynomials. We prove a novel local reproducing formula for the spaces in consideration and use it to derive concentration estimates of the large sieve type for the corresponding wavelet transforms. We conclude with a discussion of optimality of localization and Lieb inequalities in the analytic case by building on recent results of Kulikov, Ramos and Tilli based on the groundbreaking methods of Nicola and Tilli. This leads to a sharp uncertainty principle and a local Lieb inequality for the wavelet transform.
期刊介绍:
Applied and Computational Harmonic Analysis (ACHA) is an interdisciplinary journal that publishes high-quality papers in all areas of mathematical sciences related to the applied and computational aspects of harmonic analysis, with special emphasis on innovative theoretical development, methods, and algorithms, for information processing, manipulation, understanding, and so forth. The objectives of the journal are to chronicle the important publications in the rapidly growing field of data representation and analysis, to stimulate research in relevant interdisciplinary areas, and to provide a common link among mathematical, physical, and life scientists, as well as engineers.