关于多项式同一性的一般概念和同位数

IF 0.7 2区 数学 Q2 MATHEMATICS
A.S. Gordienko
{"title":"关于多项式同一性的一般概念和同位数","authors":"A.S. Gordienko","doi":"10.1016/j.jpaa.2024.107814","DOIUrl":null,"url":null,"abstract":"<div><div>Using the braided version of Lawvere's algebraic theories and Mac Lane's PROPs, we introduce polynomial identities for arbitrary algebraic structures in a braided monoidal category <span><math><mi>C</mi></math></span> as well as their codimensions in the case when <span><math><mi>C</mi></math></span> is linear over some field. The new cases include coalgebras, bialgebras, Hopf algebras, braided vector spaces, Yetter–Drinfel'd modules, etc. We find bases for polynomial identities and calculate codimensions in some important particular cases.</div></div>","PeriodicalId":54770,"journal":{"name":"Journal of Pure and Applied Algebra","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On a general notion of a polynomial identity and codimensions\",\"authors\":\"A.S. Gordienko\",\"doi\":\"10.1016/j.jpaa.2024.107814\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Using the braided version of Lawvere's algebraic theories and Mac Lane's PROPs, we introduce polynomial identities for arbitrary algebraic structures in a braided monoidal category <span><math><mi>C</mi></math></span> as well as their codimensions in the case when <span><math><mi>C</mi></math></span> is linear over some field. The new cases include coalgebras, bialgebras, Hopf algebras, braided vector spaces, Yetter–Drinfel'd modules, etc. We find bases for polynomial identities and calculate codimensions in some important particular cases.</div></div>\",\"PeriodicalId\":54770,\"journal\":{\"name\":\"Journal of Pure and Applied Algebra\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pure and Applied Algebra\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022404924002111\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pure and Applied Algebra","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022404924002111","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

利用 Lawvere 的代数理论和 Mac Lane 的 PROPs 的辫状版本,我们介绍了辫状一元范畴 C 中任意代数结构的多项式同素异形体,以及当 C 在某个域上是线性时它们的同维数。新的情况包括煤系、双系、霍普夫系、编织向量空间、Yetter-Drinfel'd 模块等。我们找到了多项式等式的基数,并计算了一些重要特殊情况下的标度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On a general notion of a polynomial identity and codimensions
Using the braided version of Lawvere's algebraic theories and Mac Lane's PROPs, we introduce polynomial identities for arbitrary algebraic structures in a braided monoidal category C as well as their codimensions in the case when C is linear over some field. The new cases include coalgebras, bialgebras, Hopf algebras, braided vector spaces, Yetter–Drinfel'd modules, etc. We find bases for polynomial identities and calculate codimensions in some important particular cases.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
12.50%
发文量
225
审稿时长
17 days
期刊介绍: The Journal of Pure and Applied Algebra concentrates on that part of algebra likely to be of general mathematical interest: algebraic results with immediate applications, and the development of algebraic theories of sufficiently general relevance to allow for future applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信