Xin You , Pengyu Lin , Junjie Song , Tao Li , Yin Du , Haifeng Wang , Wei Zhou , Litian Hu , Yongsheng Zhang
{"title":"为优化 TiCrNbTaW 高熵难熔合金的摩擦学特性而添加钛的研究","authors":"Xin You , Pengyu Lin , Junjie Song , Tao Li , Yin Du , Haifeng Wang , Wei Zhou , Litian Hu , Yongsheng Zhang","doi":"10.1016/j.triboint.2024.110290","DOIUrl":null,"url":null,"abstract":"<div><div>Many refractory high-entropy alloys (RHEAs) with high melting points suffer from severe wear-fracture failures due to compositional segregation, which is a key factor limiting their widespread application as structural parts. In this work, two novel Ti<sub><em>x</em></sub>CrNbTaW (<em>x</em> = 1 and 1.5) RHEAs were prepared using composition modulation and liquid phase assisted sintering strategies. The results showed that the further addition of Ti enhanced the strength, toughness and microstructural homogeneity of the RHEAs, which effectively suppressed the wear-fracture behavior. In addition, the dense oxidized amorphous layer formed in-situ has higher hardness than the matrix, which can provide additional load-bearing capacity. The synergistic effect of the above factors promotes the wear rate of Ti1.5 alloy to be as low as 2.9 × 10<sup>−5</sup> mm<sup>3</sup>/(N·m). The present work provides some insights into the design of high anti-wear RHEAs.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":"201 ","pages":"Article 110290"},"PeriodicalIF":6.1000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An investigation of Ti addition to optimize the tribological properties of TiCrNbTaW refractory high-entropy alloy\",\"authors\":\"Xin You , Pengyu Lin , Junjie Song , Tao Li , Yin Du , Haifeng Wang , Wei Zhou , Litian Hu , Yongsheng Zhang\",\"doi\":\"10.1016/j.triboint.2024.110290\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many refractory high-entropy alloys (RHEAs) with high melting points suffer from severe wear-fracture failures due to compositional segregation, which is a key factor limiting their widespread application as structural parts. In this work, two novel Ti<sub><em>x</em></sub>CrNbTaW (<em>x</em> = 1 and 1.5) RHEAs were prepared using composition modulation and liquid phase assisted sintering strategies. The results showed that the further addition of Ti enhanced the strength, toughness and microstructural homogeneity of the RHEAs, which effectively suppressed the wear-fracture behavior. In addition, the dense oxidized amorphous layer formed in-situ has higher hardness than the matrix, which can provide additional load-bearing capacity. The synergistic effect of the above factors promotes the wear rate of Ti1.5 alloy to be as low as 2.9 × 10<sup>−5</sup> mm<sup>3</sup>/(N·m). The present work provides some insights into the design of high anti-wear RHEAs.</div></div>\",\"PeriodicalId\":23238,\"journal\":{\"name\":\"Tribology International\",\"volume\":\"201 \",\"pages\":\"Article 110290\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301679X24010429\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24010429","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
An investigation of Ti addition to optimize the tribological properties of TiCrNbTaW refractory high-entropy alloy
Many refractory high-entropy alloys (RHEAs) with high melting points suffer from severe wear-fracture failures due to compositional segregation, which is a key factor limiting their widespread application as structural parts. In this work, two novel TixCrNbTaW (x = 1 and 1.5) RHEAs were prepared using composition modulation and liquid phase assisted sintering strategies. The results showed that the further addition of Ti enhanced the strength, toughness and microstructural homogeneity of the RHEAs, which effectively suppressed the wear-fracture behavior. In addition, the dense oxidized amorphous layer formed in-situ has higher hardness than the matrix, which can provide additional load-bearing capacity. The synergistic effect of the above factors promotes the wear rate of Ti1.5 alloy to be as low as 2.9 × 10−5 mm3/(N·m). The present work provides some insights into the design of high anti-wear RHEAs.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.