{"title":"金属有机框架改性碳纤维和石墨协同增强的聚酰亚胺复合涂层的摩擦学特性","authors":"","doi":"10.1016/j.triboint.2024.110289","DOIUrl":null,"url":null,"abstract":"<div><div>The tribological properties of neat polyimide (PI) are incompatible with service conditions, necessitating the urgent modification of its tribological properties. Carbon fibers (CFs) were surface modified with in-situ grown metal-organic frameworks (MOFs) incorporated into PI coating towards the goal of improving its mechanical and tribological properties in combination with graphite (Gr). It is successfully demonstrated that the enhanced interfacial adhesion between the CFs and PI, due to the mechanical interlocking effect of the MOFs, improved the load-carrying capacity and anti-wear properties of the coatings. Additionally, the friction-reduction effect of Gr further contributed to the improvement of tribological properties of MCFs/5Gr/PI coating. Overall, findings of the present study promote the development of engineering plastics with enhanced tribological properties.</div></div>","PeriodicalId":23238,"journal":{"name":"Tribology International","volume":null,"pages":null},"PeriodicalIF":6.1000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tribological properties of polyimide composite coatings synergistically reinforced by metal-organic frameworks modified carbon fibers and graphite\",\"authors\":\"\",\"doi\":\"10.1016/j.triboint.2024.110289\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The tribological properties of neat polyimide (PI) are incompatible with service conditions, necessitating the urgent modification of its tribological properties. Carbon fibers (CFs) were surface modified with in-situ grown metal-organic frameworks (MOFs) incorporated into PI coating towards the goal of improving its mechanical and tribological properties in combination with graphite (Gr). It is successfully demonstrated that the enhanced interfacial adhesion between the CFs and PI, due to the mechanical interlocking effect of the MOFs, improved the load-carrying capacity and anti-wear properties of the coatings. Additionally, the friction-reduction effect of Gr further contributed to the improvement of tribological properties of MCFs/5Gr/PI coating. Overall, findings of the present study promote the development of engineering plastics with enhanced tribological properties.</div></div>\",\"PeriodicalId\":23238,\"journal\":{\"name\":\"Tribology International\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tribology International\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0301679X24010417\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tribology International","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0301679X24010417","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
摘要
纯聚酰亚胺(PI)的摩擦学特性与使用条件不相容,因此迫切需要改变其摩擦学特性。在聚酰亚胺涂层中加入原位生长的金属有机框架(MOFs)对碳纤维(CFs)进行表面改性,目的是改善其与石墨(Gr)结合的机械和摩擦学性能。研究成功证明,由于 MOFs 的机械互锁效应,增强了 CFs 和 PI 之间的界面粘附力,从而提高了涂层的承载能力和抗磨损性能。此外,Gr 的减摩效果进一步促进了 MCFs/5Gr/PI 涂层摩擦学性能的改善。总之,本研究的结果促进了具有更强摩擦学性能的工程塑料的发展。
Tribological properties of polyimide composite coatings synergistically reinforced by metal-organic frameworks modified carbon fibers and graphite
The tribological properties of neat polyimide (PI) are incompatible with service conditions, necessitating the urgent modification of its tribological properties. Carbon fibers (CFs) were surface modified with in-situ grown metal-organic frameworks (MOFs) incorporated into PI coating towards the goal of improving its mechanical and tribological properties in combination with graphite (Gr). It is successfully demonstrated that the enhanced interfacial adhesion between the CFs and PI, due to the mechanical interlocking effect of the MOFs, improved the load-carrying capacity and anti-wear properties of the coatings. Additionally, the friction-reduction effect of Gr further contributed to the improvement of tribological properties of MCFs/5Gr/PI coating. Overall, findings of the present study promote the development of engineering plastics with enhanced tribological properties.
期刊介绍:
Tribology is the science of rubbing surfaces and contributes to every facet of our everyday life, from live cell friction to engine lubrication and seismology. As such tribology is truly multidisciplinary and this extraordinary breadth of scientific interest is reflected in the scope of Tribology International.
Tribology International seeks to publish original research papers of the highest scientific quality to provide an archival resource for scientists from all backgrounds. Written contributions are invited reporting experimental and modelling studies both in established areas of tribology and emerging fields. Scientific topics include the physics or chemistry of tribo-surfaces, bio-tribology, surface engineering and materials, contact mechanics, nano-tribology, lubricants and hydrodynamic lubrication.