经 Fenton 预氧化处理的假单胞菌对土壤中所有烷烃的长效降解作用

IF 3.7 3区 生物学 Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jinlan Xu , Yikai Li , Mengzhen Gao , Jianan Dai , Huan Li , Jiayi Wang
{"title":"经 Fenton 预氧化处理的假单胞菌对土壤中所有烷烃的长效降解作用","authors":"Jinlan Xu ,&nbsp;Yikai Li ,&nbsp;Mengzhen Gao ,&nbsp;Jianan Dai ,&nbsp;Huan Li ,&nbsp;Jiayi Wang","doi":"10.1016/j.bej.2024.109511","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigated the function and mechanism of Fenton pre-oxidation on the long lasting degradation of all alkanes in soil contaminated by petroleum. The findings demonstrated that the biological removal amount of all alkanes in the respiratory regulation group reached 4083.46 mg/kg, which was twice that of the non-regulation group, and the removal amount gradually increased in the four stages of bioremediation. In addition, the removal amount of all alkanes in the non-regulated group did not change much and showed a downward trend, indicating that long lasting degradation of all alkanes could be achieved by the respiratory regulation group, and the biodegradation cycle was saved by 251 days compared with the non-regulated group. Furthermore, the total number of bacteria in the respiratory regulation group (6.73 log CFU/g) was significantly higher than that in the non-regulation group (2.25 log CFU/g). <em>Pseudomonas</em> became the dominant genus in the respiratory regulation group with an average relative abundance of 32.17 %. In the respiratory regulation group, a large amount of ammonia nitrogen (1703.62 mg/kg) was consumed during the degradation process, which stimulated the tricarboxylic acid cycle respiratory metabolism process of <em>Pseudomonas</em> and accelerated the hydrocarbon conversion. This may be the reason why the long lasting degradation of all alkanes in soil could be achieved by the respiratory regulation group.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"212 ","pages":"Article 109511"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long lasting degradation of all alkanes in soil by Pseudomonas activated after Fenton pre-oxidation\",\"authors\":\"Jinlan Xu ,&nbsp;Yikai Li ,&nbsp;Mengzhen Gao ,&nbsp;Jianan Dai ,&nbsp;Huan Li ,&nbsp;Jiayi Wang\",\"doi\":\"10.1016/j.bej.2024.109511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigated the function and mechanism of Fenton pre-oxidation on the long lasting degradation of all alkanes in soil contaminated by petroleum. The findings demonstrated that the biological removal amount of all alkanes in the respiratory regulation group reached 4083.46 mg/kg, which was twice that of the non-regulation group, and the removal amount gradually increased in the four stages of bioremediation. In addition, the removal amount of all alkanes in the non-regulated group did not change much and showed a downward trend, indicating that long lasting degradation of all alkanes could be achieved by the respiratory regulation group, and the biodegradation cycle was saved by 251 days compared with the non-regulated group. Furthermore, the total number of bacteria in the respiratory regulation group (6.73 log CFU/g) was significantly higher than that in the non-regulation group (2.25 log CFU/g). <em>Pseudomonas</em> became the dominant genus in the respiratory regulation group with an average relative abundance of 32.17 %. In the respiratory regulation group, a large amount of ammonia nitrogen (1703.62 mg/kg) was consumed during the degradation process, which stimulated the tricarboxylic acid cycle respiratory metabolism process of <em>Pseudomonas</em> and accelerated the hydrocarbon conversion. This may be the reason why the long lasting degradation of all alkanes in soil could be achieved by the respiratory regulation group.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"212 \",\"pages\":\"Article 109511\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X24002985\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X24002985","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了 Fenton 预氧化作用对石油污染土壤中所有烷烃的长效降解作用及其机理。研究结果表明,呼吸调节组对所有烷烃的生物去除量达到 4083.46 mg/kg,是非调节组的两倍,并且在生物修复的四个阶段中去除量逐渐增加。此外,非调节组对所有烷烃的去除量变化不大,呈下降趋势,这表明呼吸调节组可实现对所有烷烃的长效降解,生物降解周期比非调节组节省了 251 天。此外,呼吸调节组的细菌总数(6.73 log CFU/g)明显高于非调节组(2.25 log CFU/g)。假单胞菌成为呼吸调节组的优势菌属,平均相对丰度为 32.17%。呼吸调节组在降解过程中消耗了大量氨氮(1703.62 mg/kg),刺激了假单胞菌的三羧酸循环呼吸代谢过程,加速了碳氢化合物的转化。这可能就是呼吸调节组能够长期降解土壤中所有烷烃的原因。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long lasting degradation of all alkanes in soil by Pseudomonas activated after Fenton pre-oxidation
This study investigated the function and mechanism of Fenton pre-oxidation on the long lasting degradation of all alkanes in soil contaminated by petroleum. The findings demonstrated that the biological removal amount of all alkanes in the respiratory regulation group reached 4083.46 mg/kg, which was twice that of the non-regulation group, and the removal amount gradually increased in the four stages of bioremediation. In addition, the removal amount of all alkanes in the non-regulated group did not change much and showed a downward trend, indicating that long lasting degradation of all alkanes could be achieved by the respiratory regulation group, and the biodegradation cycle was saved by 251 days compared with the non-regulated group. Furthermore, the total number of bacteria in the respiratory regulation group (6.73 log CFU/g) was significantly higher than that in the non-regulation group (2.25 log CFU/g). Pseudomonas became the dominant genus in the respiratory regulation group with an average relative abundance of 32.17 %. In the respiratory regulation group, a large amount of ammonia nitrogen (1703.62 mg/kg) was consumed during the degradation process, which stimulated the tricarboxylic acid cycle respiratory metabolism process of Pseudomonas and accelerated the hydrocarbon conversion. This may be the reason why the long lasting degradation of all alkanes in soil could be achieved by the respiratory regulation group.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Biochemical Engineering Journal
Biochemical Engineering Journal 工程技术-工程:化工
CiteScore
7.10
自引率
5.10%
发文量
380
审稿时长
34 days
期刊介绍: The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology. The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields: Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics Biosensors and Biodevices including biofabrication and novel fuel cell development Bioseparations including scale-up and protein refolding/renaturation Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells Bioreactor Systems including characterization, optimization and scale-up Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis Protein Engineering including enzyme engineering and directed evolution.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信