关于二面波利亚场

Pub Date : 2024-09-23 DOI:10.1016/j.jnt.2024.08.005
Charles Wend-Waoga Tougma
{"title":"关于二面波利亚场","authors":"Charles Wend-Waoga Tougma","doi":"10.1016/j.jnt.2024.08.005","DOIUrl":null,"url":null,"abstract":"<div><div>A number field is a Pólya field when the module of integer-valued polynomials over its ring of integers has a regular basis. A quartic field is a <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-field when the Galois group of its splitting field is the dihedral group <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> of 8 elements. In this paper, we prove that there are infinitely many <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-Pólya fields with <em>ℓ</em> ramified prime numbers for each <span><math><mi>ℓ</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>}</mo></math></span> and a <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> Pólya field with <span><math><mi>ℓ</mi><mo>=</mo><mn>1</mn></math></span> ramified prime number, is, up to <span><math><mi>Q</mi></math></span>-isomorphism, <span><math><mi>Q</mi><mrow><mo>(</mo><msqrt><mrow><mn>1</mn><mo>+</mo><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></msqrt><mo>)</mo></mrow></math></span>, <span><math><mi>Q</mi><mrow><mo>(</mo><msqrt><mrow><mo>−</mo><mn>1</mn><mo>+</mo><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></msqrt><mo>)</mo></mrow></math></span> or a pure field. Consequently, we answer a question raised in <span><span>[29]</span></span> on <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-fields. The same question arises on pure fields. We find an upper bound for such fields. And for any integer <em>ℓ</em> less that this bound, we show that there are infinitely many pure Pólya fields with <em>ℓ</em> ramified prime numbers except when <span><math><mi>ℓ</mi><mo>=</mo><mn>1</mn></math></span> where we proved that there are only 2 fields (and their two conjugate fields)</div></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On dihedral Pólya fields\",\"authors\":\"Charles Wend-Waoga Tougma\",\"doi\":\"10.1016/j.jnt.2024.08.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A number field is a Pólya field when the module of integer-valued polynomials over its ring of integers has a regular basis. A quartic field is a <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-field when the Galois group of its splitting field is the dihedral group <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> of 8 elements. In this paper, we prove that there are infinitely many <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-Pólya fields with <em>ℓ</em> ramified prime numbers for each <span><math><mi>ℓ</mi><mo>∈</mo><mo>{</mo><mn>2</mn><mo>,</mo><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mn>5</mn><mo>}</mo></math></span> and a <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span> Pólya field with <span><math><mi>ℓ</mi><mo>=</mo><mn>1</mn></math></span> ramified prime number, is, up to <span><math><mi>Q</mi></math></span>-isomorphism, <span><math><mi>Q</mi><mrow><mo>(</mo><msqrt><mrow><mn>1</mn><mo>+</mo><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></msqrt><mo>)</mo></mrow></math></span>, <span><math><mi>Q</mi><mrow><mo>(</mo><msqrt><mrow><mo>−</mo><mn>1</mn><mo>+</mo><msqrt><mrow><mn>2</mn></mrow></msqrt></mrow></msqrt><mo>)</mo></mrow></math></span> or a pure field. Consequently, we answer a question raised in <span><span>[29]</span></span> on <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>4</mn></mrow></msub></math></span>-fields. The same question arises on pure fields. We find an upper bound for such fields. And for any integer <em>ℓ</em> less that this bound, we show that there are infinitely many pure Pólya fields with <em>ℓ</em> ramified prime numbers except when <span><math><mi>ℓ</mi><mo>=</mo><mn>1</mn></math></span> where we proved that there are only 2 fields (and their two conjugate fields)</div></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022314X24001926\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022314X24001926","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

当一个数域的整数环上的整值多项式模块具有规则基础时,该数域就是波利亚域。当一个四元场的分裂场的伽罗瓦群是由 8 个元素组成的二面群 D4 时,它就是一个 D4 场。本文证明,对于每个 ℓ∈{2,3,4,5} 都有ℓ 夯素数的 D4-Pólya 场有无穷多个,而具有 ℓ=1 夯素数的 D4 Pólya 场在 Q-isomorphism 下是 Q(1+2)、Q(-1+2) 或纯场。因此,我们回答了 [29] 提出的关于 D4 场的问题。同样的问题也出现在纯域上。我们找到了纯场的上限。对于小于这个上限的任何整数 ℓ,我们证明了有无穷多个具有 ℓ 夯素数的纯波利亚场,除了当 ℓ=1 时,我们证明了只有 2 个场(以及它们的两个共轭场)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
On dihedral Pólya fields
A number field is a Pólya field when the module of integer-valued polynomials over its ring of integers has a regular basis. A quartic field is a D4-field when the Galois group of its splitting field is the dihedral group D4 of 8 elements. In this paper, we prove that there are infinitely many D4-Pólya fields with ramified prime numbers for each {2,3,4,5} and a D4 Pólya field with =1 ramified prime number, is, up to Q-isomorphism, Q(1+2), Q(1+2) or a pure field. Consequently, we answer a question raised in [29] on D4-fields. The same question arises on pure fields. We find an upper bound for such fields. And for any integer less that this bound, we show that there are infinitely many pure Pólya fields with ramified prime numbers except when =1 where we proved that there are only 2 fields (and their two conjugate fields)
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信