基于铁/锌二元 MOF 的隔膜,用于锂-S 电池中的高效多硫化物吸附和转化

IF 8.1 2区 工程技术 Q1 CHEMISTRY, PHYSICAL
Rameez Razaq , Nima Allahgholi , Mir Mehraj Ud Din , Didrik R. Småbråten , T.O. Sunde , Önder Tekinalp , Zainab Waris , Xueru Wang , Daniel Rettenwander , Liyuan Deng
{"title":"基于铁/锌二元 MOF 的隔膜,用于锂-S 电池中的高效多硫化物吸附和转化","authors":"Rameez Razaq ,&nbsp;Nima Allahgholi ,&nbsp;Mir Mehraj Ud Din ,&nbsp;Didrik R. Småbråten ,&nbsp;T.O. Sunde ,&nbsp;Önder Tekinalp ,&nbsp;Zainab Waris ,&nbsp;Xueru Wang ,&nbsp;Daniel Rettenwander ,&nbsp;Liyuan Deng","doi":"10.1016/j.jpowsour.2024.235527","DOIUrl":null,"url":null,"abstract":"<div><div>Lithium-sulfur (Li-S) batteries are known as a next-generation energy storage technology due to their high theoretical energy density and low cost. However, the shuttling of soluble lithium polysulfides (LPS) between electrodes hinders the practical realization of Li-S batteries, resulting in short cycle life. To address this issue, this work discloses a highly efficient separator with Fe/Zr binary metal-organic framework (MOF) coated on a polypropylene (PP) separator. Fe<sup>3+</sup> metal ions were integrated into the UiO-66(Zr)-NH<sub>2</sub> framework through a simple one-step hydrothermal method. The adsorption test confirmed the superior LPS adsorption capability of the UiO-66(Fe/Zr)-NH<sub>2</sub> than monometallic UiO-66(Zr)-NH<sub>2</sub>, which provides not only uniform-sized nanochannels for effective LPS sorption and even Li<sup>+</sup> ions transport but also Fe active sites for electrocatalytic conversion of the LPS. UiO-66(Fe/Zr)-NH<sub>2</sub>-based Li symmetrical cells demonstrated a uniform stripping and plating of Li at exceptionally higher current densities (1–10 mA cm<sup>−2</sup>). CR2023 coin cell Li-S battery using a S-CNT/GO composite cathode and UiO-66(Fe/Zr)-NH<sub>2</sub>/PP separator delivered an initial discharge capacity of 900 mAh/g at 0.3C and a long cycle life (820 cycles) with minimal capacity decay of merely 0.067 % per cycle. The significantly improved performance demonstrates the potential of binary MOF-based materials for metal-sulfur batteries.</div></div>","PeriodicalId":377,"journal":{"name":"Journal of Power Sources","volume":"624 ","pages":"Article 235527"},"PeriodicalIF":8.1000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fe/Zr binary MOF-based separator for highly efficient polysulfide adsorption and conversion in Li-S batteries\",\"authors\":\"Rameez Razaq ,&nbsp;Nima Allahgholi ,&nbsp;Mir Mehraj Ud Din ,&nbsp;Didrik R. Småbråten ,&nbsp;T.O. Sunde ,&nbsp;Önder Tekinalp ,&nbsp;Zainab Waris ,&nbsp;Xueru Wang ,&nbsp;Daniel Rettenwander ,&nbsp;Liyuan Deng\",\"doi\":\"10.1016/j.jpowsour.2024.235527\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Lithium-sulfur (Li-S) batteries are known as a next-generation energy storage technology due to their high theoretical energy density and low cost. However, the shuttling of soluble lithium polysulfides (LPS) between electrodes hinders the practical realization of Li-S batteries, resulting in short cycle life. To address this issue, this work discloses a highly efficient separator with Fe/Zr binary metal-organic framework (MOF) coated on a polypropylene (PP) separator. Fe<sup>3+</sup> metal ions were integrated into the UiO-66(Zr)-NH<sub>2</sub> framework through a simple one-step hydrothermal method. The adsorption test confirmed the superior LPS adsorption capability of the UiO-66(Fe/Zr)-NH<sub>2</sub> than monometallic UiO-66(Zr)-NH<sub>2</sub>, which provides not only uniform-sized nanochannels for effective LPS sorption and even Li<sup>+</sup> ions transport but also Fe active sites for electrocatalytic conversion of the LPS. UiO-66(Fe/Zr)-NH<sub>2</sub>-based Li symmetrical cells demonstrated a uniform stripping and plating of Li at exceptionally higher current densities (1–10 mA cm<sup>−2</sup>). CR2023 coin cell Li-S battery using a S-CNT/GO composite cathode and UiO-66(Fe/Zr)-NH<sub>2</sub>/PP separator delivered an initial discharge capacity of 900 mAh/g at 0.3C and a long cycle life (820 cycles) with minimal capacity decay of merely 0.067 % per cycle. The significantly improved performance demonstrates the potential of binary MOF-based materials for metal-sulfur batteries.</div></div>\",\"PeriodicalId\":377,\"journal\":{\"name\":\"Journal of Power Sources\",\"volume\":\"624 \",\"pages\":\"Article 235527\"},\"PeriodicalIF\":8.1000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Power Sources\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378775324014794\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Power Sources","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378775324014794","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

锂硫(Li-S)电池因其理论能量密度高、成本低而被称为下一代储能技术。然而,可溶性多硫化锂(LPS)在电极之间的穿梭阻碍了锂硫电池的实际应用,导致其循环寿命短。为解决这一问题,本研究揭示了一种在聚丙烯(PP)隔板上涂覆铁/锌二元金属有机框架(MOF)的高效隔板。通过简单的一步水热法,Fe3+ 金属离子被整合到 UiO-66(Zr)-NH2 框架中。吸附试验证实,与单金属 UiO-66(Zr)-NH2 相比,UiO-66(Fe/Zr)-NH2 对 LPS 的吸附能力更强,它不仅为 LPS 的有效吸附甚至 Li+ 离子的传输提供了大小均匀的纳米通道,还为 LPS 的电催化转化提供了 Fe 活性位点。基于 UiO-66(Fe/Zr)-NH2 的锂对称电池在极高的电流密度(1-10 mA cm-2)条件下实现了锂的均匀剥离和电镀。使用 S-CNT/GO 复合阴极和 UiO-66(Fe/Zr)-NH2/PP 隔膜的 CR2023 纽扣电池锂-S 电池在 0.3C 时的初始放电容量为 900 mAh/g,循环寿命长(820 次),每次循环的容量衰减最小,仅为 0.067%。性能的大幅提高证明了二元 MOF 基材料在金属硫电池中的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Fe/Zr binary MOF-based separator for highly efficient polysulfide adsorption and conversion in Li-S batteries

Fe/Zr binary MOF-based separator for highly efficient polysulfide adsorption and conversion in Li-S batteries
Lithium-sulfur (Li-S) batteries are known as a next-generation energy storage technology due to their high theoretical energy density and low cost. However, the shuttling of soluble lithium polysulfides (LPS) between electrodes hinders the practical realization of Li-S batteries, resulting in short cycle life. To address this issue, this work discloses a highly efficient separator with Fe/Zr binary metal-organic framework (MOF) coated on a polypropylene (PP) separator. Fe3+ metal ions were integrated into the UiO-66(Zr)-NH2 framework through a simple one-step hydrothermal method. The adsorption test confirmed the superior LPS adsorption capability of the UiO-66(Fe/Zr)-NH2 than monometallic UiO-66(Zr)-NH2, which provides not only uniform-sized nanochannels for effective LPS sorption and even Li+ ions transport but also Fe active sites for electrocatalytic conversion of the LPS. UiO-66(Fe/Zr)-NH2-based Li symmetrical cells demonstrated a uniform stripping and plating of Li at exceptionally higher current densities (1–10 mA cm−2). CR2023 coin cell Li-S battery using a S-CNT/GO composite cathode and UiO-66(Fe/Zr)-NH2/PP separator delivered an initial discharge capacity of 900 mAh/g at 0.3C and a long cycle life (820 cycles) with minimal capacity decay of merely 0.067 % per cycle. The significantly improved performance demonstrates the potential of binary MOF-based materials for metal-sulfur batteries.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Power Sources
Journal of Power Sources 工程技术-电化学
CiteScore
16.40
自引率
6.50%
发文量
1249
审稿时长
36 days
期刊介绍: The Journal of Power Sources is a publication catering to researchers and technologists interested in various aspects of the science, technology, and applications of electrochemical power sources. It covers original research and reviews on primary and secondary batteries, fuel cells, supercapacitors, and photo-electrochemical cells. Topics considered include the research, development and applications of nanomaterials and novel componentry for these devices. Examples of applications of these electrochemical power sources include: • Portable electronics • Electric and Hybrid Electric Vehicles • Uninterruptible Power Supply (UPS) systems • Storage of renewable energy • Satellites and deep space probes • Boats and ships, drones and aircrafts • Wearable energy storage systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信