{"title":"增强贝氏梭菌 Y10 利用葡萄糖和木糖生产丙酮-丁醇-乙醇的策略及其生理机制探索","authors":"Yujie Jing, Mengying Liu, Shuaiying Peng, Huanhuan Ding, Saijin Wei, Qinghua Zhang, Hanguang Li","doi":"10.1016/j.bej.2024.109518","DOIUrl":null,"url":null,"abstract":"<div><div>To enhance the production of butanol and its ratio to the total solvent, the impacts of exogenous amino acids supplementation on acetone-butanol-ethanol (ABE) fermentation were studied. With this effort, the highest butanol and total solvent production of 14.18 ± 0.24 g/L and 16.29 ± 0.31 g/L were achieved when 5.0 mg/L of phenylalanine was added at 18 h. Additionally, to explore the physiological reasons for the efficient synthesis of butanol under the optimal condition, the changes of key enzyme activities in the butanol synthesis pathway and the intracellular microenvironment were investigated. The findings show that phenylalanine addition could enhance crude enzyme activities of acetate kinase and butyrate kinase activities, strengthen NADH synthesis and expend more ATP to promote the growth of <em>Clostridium beijerinckii</em> Y10. This study suggests that the method of a tiny amount of amino acid addition was a simple and efficient approach to enhance bio-butanol production, thus providing a new strategy to improve the performance of other similar fermentation.</div></div>","PeriodicalId":8766,"journal":{"name":"Biochemical Engineering Journal","volume":"212 ","pages":"Article 109518"},"PeriodicalIF":3.7000,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies for enhanced acetone-butanol-ethanol production by Clostridium beijerinckii Y10 from glucose and xylose and exploration of its physiological mechanisms\",\"authors\":\"Yujie Jing, Mengying Liu, Shuaiying Peng, Huanhuan Ding, Saijin Wei, Qinghua Zhang, Hanguang Li\",\"doi\":\"10.1016/j.bej.2024.109518\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To enhance the production of butanol and its ratio to the total solvent, the impacts of exogenous amino acids supplementation on acetone-butanol-ethanol (ABE) fermentation were studied. With this effort, the highest butanol and total solvent production of 14.18 ± 0.24 g/L and 16.29 ± 0.31 g/L were achieved when 5.0 mg/L of phenylalanine was added at 18 h. Additionally, to explore the physiological reasons for the efficient synthesis of butanol under the optimal condition, the changes of key enzyme activities in the butanol synthesis pathway and the intracellular microenvironment were investigated. The findings show that phenylalanine addition could enhance crude enzyme activities of acetate kinase and butyrate kinase activities, strengthen NADH synthesis and expend more ATP to promote the growth of <em>Clostridium beijerinckii</em> Y10. This study suggests that the method of a tiny amount of amino acid addition was a simple and efficient approach to enhance bio-butanol production, thus providing a new strategy to improve the performance of other similar fermentation.</div></div>\",\"PeriodicalId\":8766,\"journal\":{\"name\":\"Biochemical Engineering Journal\",\"volume\":\"212 \",\"pages\":\"Article 109518\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical Engineering Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1369703X2400305X\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical Engineering Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1369703X2400305X","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Strategies for enhanced acetone-butanol-ethanol production by Clostridium beijerinckii Y10 from glucose and xylose and exploration of its physiological mechanisms
To enhance the production of butanol and its ratio to the total solvent, the impacts of exogenous amino acids supplementation on acetone-butanol-ethanol (ABE) fermentation were studied. With this effort, the highest butanol and total solvent production of 14.18 ± 0.24 g/L and 16.29 ± 0.31 g/L were achieved when 5.0 mg/L of phenylalanine was added at 18 h. Additionally, to explore the physiological reasons for the efficient synthesis of butanol under the optimal condition, the changes of key enzyme activities in the butanol synthesis pathway and the intracellular microenvironment were investigated. The findings show that phenylalanine addition could enhance crude enzyme activities of acetate kinase and butyrate kinase activities, strengthen NADH synthesis and expend more ATP to promote the growth of Clostridium beijerinckii Y10. This study suggests that the method of a tiny amount of amino acid addition was a simple and efficient approach to enhance bio-butanol production, thus providing a new strategy to improve the performance of other similar fermentation.
期刊介绍:
The Biochemical Engineering Journal aims to promote progress in the crucial chemical engineering aspects of the development of biological processes associated with everything from raw materials preparation to product recovery relevant to industries as diverse as medical/healthcare, industrial biotechnology, and environmental biotechnology.
The Journal welcomes full length original research papers, short communications, and review papers* in the following research fields:
Biocatalysis (enzyme or microbial) and biotransformations, including immobilized biocatalyst preparation and kinetics
Biosensors and Biodevices including biofabrication and novel fuel cell development
Bioseparations including scale-up and protein refolding/renaturation
Environmental Bioengineering including bioconversion, bioremediation, and microbial fuel cells
Bioreactor Systems including characterization, optimization and scale-up
Bioresources and Biorefinery Engineering including biomass conversion, biofuels, bioenergy, and optimization
Industrial Biotechnology including specialty chemicals, platform chemicals and neutraceuticals
Biomaterials and Tissue Engineering including bioartificial organs, cell encapsulation, and controlled release
Cell Culture Engineering (plant, animal or insect cells) including viral vectors, monoclonal antibodies, recombinant proteins, vaccines, and secondary metabolites
Cell Therapies and Stem Cells including pluripotent, mesenchymal and hematopoietic stem cells; immunotherapies; tissue-specific differentiation; and cryopreservation
Metabolic Engineering, Systems and Synthetic Biology including OMICS, bioinformatics, in silico biology, and metabolic flux analysis
Protein Engineering including enzyme engineering and directed evolution.