William R. Green , Connor Lane , Benjamin Lyons , Shyam Ravishankar , Aden Shaw
{"title":"三维空间中的无质量狄拉克方程:分散估计和零能量障碍","authors":"William R. Green , Connor Lane , Benjamin Lyons , Shyam Ravishankar , Aden Shaw","doi":"10.1016/j.jde.2024.10.005","DOIUrl":null,"url":null,"abstract":"<div><div>We investigate dispersive estimates for the massless three dimensional Dirac equation with a potential. In particular, we show that the Dirac evolution satisfies a <span><math><msup><mrow><mo>〈</mo><mi>t</mi><mo>〉</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> decay rate as an operator from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> regardless of the existence of zero energy eigenfunctions. We also show this decay rate may be improved to <span><math><msup><mrow><mo>〈</mo><mi>t</mi><mo>〉</mo></mrow><mrow><mo>−</mo><mn>1</mn><mo>−</mo><mi>γ</mi></mrow></msup></math></span> for any <span><math><mn>0</mn><mo>≤</mo><mi>γ</mi><mo><</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> at the cost of spatial weights. This estimate, along with the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> conservation law allows one to deduce a family of Strichartz estimates in the case of a threshold eigenvalue. We classify the structure of threshold obstructions as being composed of zero energy eigenfunctions. Finally, we show the Dirac evolution is bounded for all time with minimal requirements on the decay of the potential and smoothness of initial data.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The massless Dirac equation in three dimensions: Dispersive estimates and zero energy obstructions\",\"authors\":\"William R. Green , Connor Lane , Benjamin Lyons , Shyam Ravishankar , Aden Shaw\",\"doi\":\"10.1016/j.jde.2024.10.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We investigate dispersive estimates for the massless three dimensional Dirac equation with a potential. In particular, we show that the Dirac evolution satisfies a <span><math><msup><mrow><mo>〈</mo><mi>t</mi><mo>〉</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></math></span> decay rate as an operator from <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span> to <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> regardless of the existence of zero energy eigenfunctions. We also show this decay rate may be improved to <span><math><msup><mrow><mo>〈</mo><mi>t</mi><mo>〉</mo></mrow><mrow><mo>−</mo><mn>1</mn><mo>−</mo><mi>γ</mi></mrow></msup></math></span> for any <span><math><mn>0</mn><mo>≤</mo><mi>γ</mi><mo><</mo><mn>1</mn><mo>/</mo><mn>2</mn></math></span> at the cost of spatial weights. This estimate, along with the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> conservation law allows one to deduce a family of Strichartz estimates in the case of a threshold eigenvalue. We classify the structure of threshold obstructions as being composed of zero energy eigenfunctions. Finally, we show the Dirac evolution is bounded for all time with minimal requirements on the decay of the potential and smoothness of initial data.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039624006557\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039624006557","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
The massless Dirac equation in three dimensions: Dispersive estimates and zero energy obstructions
We investigate dispersive estimates for the massless three dimensional Dirac equation with a potential. In particular, we show that the Dirac evolution satisfies a decay rate as an operator from to regardless of the existence of zero energy eigenfunctions. We also show this decay rate may be improved to for any at the cost of spatial weights. This estimate, along with the conservation law allows one to deduce a family of Strichartz estimates in the case of a threshold eigenvalue. We classify the structure of threshold obstructions as being composed of zero energy eigenfunctions. Finally, we show the Dirac evolution is bounded for all time with minimal requirements on the decay of the potential and smoothness of initial data.
期刊介绍:
The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools.
Research Areas Include:
• Mathematical control theory
• Ordinary differential equations
• Partial differential equations
• Stochastic differential equations
• Topological dynamics
• Related topics