{"title":"针对分布式异构灵活作业车间调度问题的基于轨迹的深度强化学习驱动元启发式","authors":"Qichen Zhang , Weishi Shao , Zhongshi Shao , Dechang Pi , Jiaquan Gao","doi":"10.1016/j.swevo.2024.101753","DOIUrl":null,"url":null,"abstract":"<div><div>As the production environment evolves, distributed manufacturing exhibits heterogeneous characteristics, including diverse machines, workers, and production processes. This paper examines a distributed heterogeneous flexible job shop scheduling problem (DHFJSP) with varying processing times. A mixed integer linear programming (MILP) model of the DHFJSP is formulated with the objective of minimizing the makespan. To solve the DHFJSP, we propose a deep Q network-aided automatic design of a variable neighborhood search algorithm (DQN-VNS). By analyzing schedules, sixty-one types of scheduling features are extracted. These features, along with six shaking strategies, are used as states and actions. A DHFJSP environment simulator is developed to train the deep Q network. The well-trained DQN then generates the shaking procedure for VNS. Additionally, a greedy initialization method is proposed to enhance the quality of the initial solution. Seven efficient critical path-based neighborhood structures with three-vector encoding scheme are introduced to improve local search. Numerical experiments on various scales of instances validate the effectiveness of the MILP model and the DQN-VNS algorithm. The results show that the DQN-VNS algorithm achieves an average relative percentage deviation (ARPD) of 3.2%, which represents an approximately 88.45% reduction compared to the best-performing algorithm among the six compared, with an ARPD of 27.7%. This significant reduction in ARPD highlights the superior stability and performance of the proposed DQN-VNS algorithm.</div></div>","PeriodicalId":48682,"journal":{"name":"Swarm and Evolutionary Computation","volume":"91 ","pages":"Article 101753"},"PeriodicalIF":8.2000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep reinforcement learning driven trajectory-based meta-heuristic for distributed heterogeneous flexible job shop scheduling problem\",\"authors\":\"Qichen Zhang , Weishi Shao , Zhongshi Shao , Dechang Pi , Jiaquan Gao\",\"doi\":\"10.1016/j.swevo.2024.101753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As the production environment evolves, distributed manufacturing exhibits heterogeneous characteristics, including diverse machines, workers, and production processes. This paper examines a distributed heterogeneous flexible job shop scheduling problem (DHFJSP) with varying processing times. A mixed integer linear programming (MILP) model of the DHFJSP is formulated with the objective of minimizing the makespan. To solve the DHFJSP, we propose a deep Q network-aided automatic design of a variable neighborhood search algorithm (DQN-VNS). By analyzing schedules, sixty-one types of scheduling features are extracted. These features, along with six shaking strategies, are used as states and actions. A DHFJSP environment simulator is developed to train the deep Q network. The well-trained DQN then generates the shaking procedure for VNS. Additionally, a greedy initialization method is proposed to enhance the quality of the initial solution. Seven efficient critical path-based neighborhood structures with three-vector encoding scheme are introduced to improve local search. Numerical experiments on various scales of instances validate the effectiveness of the MILP model and the DQN-VNS algorithm. The results show that the DQN-VNS algorithm achieves an average relative percentage deviation (ARPD) of 3.2%, which represents an approximately 88.45% reduction compared to the best-performing algorithm among the six compared, with an ARPD of 27.7%. This significant reduction in ARPD highlights the superior stability and performance of the proposed DQN-VNS algorithm.</div></div>\",\"PeriodicalId\":48682,\"journal\":{\"name\":\"Swarm and Evolutionary Computation\",\"volume\":\"91 \",\"pages\":\"Article 101753\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Swarm and Evolutionary Computation\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2210650224002918\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Swarm and Evolutionary Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2210650224002918","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Deep reinforcement learning driven trajectory-based meta-heuristic for distributed heterogeneous flexible job shop scheduling problem
As the production environment evolves, distributed manufacturing exhibits heterogeneous characteristics, including diverse machines, workers, and production processes. This paper examines a distributed heterogeneous flexible job shop scheduling problem (DHFJSP) with varying processing times. A mixed integer linear programming (MILP) model of the DHFJSP is formulated with the objective of minimizing the makespan. To solve the DHFJSP, we propose a deep Q network-aided automatic design of a variable neighborhood search algorithm (DQN-VNS). By analyzing schedules, sixty-one types of scheduling features are extracted. These features, along with six shaking strategies, are used as states and actions. A DHFJSP environment simulator is developed to train the deep Q network. The well-trained DQN then generates the shaking procedure for VNS. Additionally, a greedy initialization method is proposed to enhance the quality of the initial solution. Seven efficient critical path-based neighborhood structures with three-vector encoding scheme are introduced to improve local search. Numerical experiments on various scales of instances validate the effectiveness of the MILP model and the DQN-VNS algorithm. The results show that the DQN-VNS algorithm achieves an average relative percentage deviation (ARPD) of 3.2%, which represents an approximately 88.45% reduction compared to the best-performing algorithm among the six compared, with an ARPD of 27.7%. This significant reduction in ARPD highlights the superior stability and performance of the proposed DQN-VNS algorithm.
期刊介绍:
Swarm and Evolutionary Computation is a pioneering peer-reviewed journal focused on the latest research and advancements in nature-inspired intelligent computation using swarm and evolutionary algorithms. It covers theoretical, experimental, and practical aspects of these paradigms and their hybrids, promoting interdisciplinary research. The journal prioritizes the publication of high-quality, original articles that push the boundaries of evolutionary computation and swarm intelligence. Additionally, it welcomes survey papers on current topics and novel applications. Topics of interest include but are not limited to: Genetic Algorithms, and Genetic Programming, Evolution Strategies, and Evolutionary Programming, Differential Evolution, Artificial Immune Systems, Particle Swarms, Ant Colony, Bacterial Foraging, Artificial Bees, Fireflies Algorithm, Harmony Search, Artificial Life, Digital Organisms, Estimation of Distribution Algorithms, Stochastic Diffusion Search, Quantum Computing, Nano Computing, Membrane Computing, Human-centric Computing, Hybridization of Algorithms, Memetic Computing, Autonomic Computing, Self-organizing systems, Combinatorial, Discrete, Binary, Constrained, Multi-objective, Multi-modal, Dynamic, and Large-scale Optimization.