有界重复分支程序和有界宽度 CNF 的分裂能力

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Igor Razgon
{"title":"有界重复分支程序和有界宽度 CNF 的分裂能力","authors":"Igor Razgon","doi":"10.1016/j.dam.2024.09.028","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper we study syntactic branching programs of bounded repetition representing CNFs of bounded treewidth. For this purpose we introduce two new structural graph parameters <span><math><mi>d</mi></math></span>-pathwidth and clique preserving <span><math><mi>d</mi></math></span>-pathwidth denoted by <span><math><mrow><mi>p</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>c</mi><mi>p</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> where <span><math><mi>G</mi></math></span> is a graph. We show that <span><math><mrow><mi>c</mi><mi>p</mi><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>O</mi><mrow><mo>(</mo><mi>t</mi><mi>w</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><mi>t</mi><mi>w</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> are, respectively the treewidth and maximal degree of <span><math><mi>G</mi></math></span>. Using this upper bound, we demonstrate that each CNF <span><math><mi>ψ</mi></math></span> can be represented as a conjunction of two OBDDs (quite a restricted class of read-twice branching programs) of size <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mrow><mo>(</mo><mi>Δ</mi><mrow><mo>(</mo><mi>ψ</mi><mo>)</mo></mrow><mi>⋅</mi><mi>t</mi><mi>w</mi><msup><mrow><mrow><mo>(</mo><mi>ψ</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></msup></math></span> where <span><math><mrow><mi>t</mi><mi>w</mi><mrow><mo>(</mo><mi>ψ</mi><mo>)</mo></mrow></mrow></math></span> is the treewidth of the primal graph of <span><math><mi>ψ</mi></math></span> and each variable occurs in <span><math><mi>ψ</mi></math></span> at most <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>ψ</mi><mo>)</mo></mrow></mrow></math></span> times.</div><div>Next, we use <span><math><mi>d</mi></math></span>-pathwidth to obtain lower bounds for monotone branching programs. In particular, we consider the monotone version of syntactic nondeterministic read <span><math><mi>d</mi></math></span> times branching programs (just forbidding negative literals as edge labels) and introduce a further restriction that each computational path can be partitioned into at most <span><math><mi>d</mi></math></span> read-once subpaths. We call the resulting model separable monotone read <span><math><mi>d</mi></math></span> times branching programs and abbreviate them <span><math><mi>d</mi></math></span>-SMNBPs. For each graph <span><math><mi>G</mi></math></span> without isolated vertices, we introduce a CNF <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> whose clauses are <span><math><mrow><mo>(</mo><mi>u</mi><mo>∨</mo><mi>e</mi><mo>∨</mo><mi>v</mi><mo>)</mo></mrow></math></span> for each edge <span><math><mrow><mi>e</mi><mo>=</mo><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span>. We prove that a <span><math><mi>d</mi></math></span>-SMNBP representing <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is of size at least <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>c</mi></mrow><mrow><mi>p</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><mi>c</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><mn>8</mn><mo>/</mo><mn>7</mn><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>12</mn></mrow></msup></mrow></math></span>. We use this ’generic’ lower bound to obtain an exponential lower bound for a ’concrete’ class of CNFs <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>. In particular, we demonstrate that for each <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>a</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>, the size of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span>-SMNBP representing <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is at least <span><math><msup><mrow><mi>c</mi></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>b</mi></mrow></msup></mrow></msup></math></span> where <span><math><mi>b</mi></math></span> is an arbitrary constant such that <span><math><mrow><mi>a</mi><mo>+</mo><mi>b</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>. This lower bound is tight in the sense <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> can be represented by a poly-sized <span><math><mi>n</mi></math></span>-SMNBP.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 366-381"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The splitting power of branching programs of bounded repetition and CNFs of bounded width\",\"authors\":\"Igor Razgon\",\"doi\":\"10.1016/j.dam.2024.09.028\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper we study syntactic branching programs of bounded repetition representing CNFs of bounded treewidth. For this purpose we introduce two new structural graph parameters <span><math><mi>d</mi></math></span>-pathwidth and clique preserving <span><math><mi>d</mi></math></span>-pathwidth denoted by <span><math><mrow><mi>p</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>c</mi><mi>p</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> where <span><math><mi>G</mi></math></span> is a graph. We show that <span><math><mrow><mi>c</mi><mi>p</mi><msub><mrow><mi>w</mi></mrow><mrow><mn>2</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>O</mi><mrow><mo>(</mo><mi>t</mi><mi>w</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><mi>t</mi><mi>w</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> are, respectively the treewidth and maximal degree of <span><math><mi>G</mi></math></span>. Using this upper bound, we demonstrate that each CNF <span><math><mi>ψ</mi></math></span> can be represented as a conjunction of two OBDDs (quite a restricted class of read-twice branching programs) of size <span><math><msup><mrow><mn>2</mn></mrow><mrow><mi>O</mi><mrow><mo>(</mo><mi>Δ</mi><mrow><mo>(</mo><mi>ψ</mi><mo>)</mo></mrow><mi>⋅</mi><mi>t</mi><mi>w</mi><msup><mrow><mrow><mo>(</mo><mi>ψ</mi><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup><mo>)</mo></mrow></mrow></msup></math></span> where <span><math><mrow><mi>t</mi><mi>w</mi><mrow><mo>(</mo><mi>ψ</mi><mo>)</mo></mrow></mrow></math></span> is the treewidth of the primal graph of <span><math><mi>ψ</mi></math></span> and each variable occurs in <span><math><mi>ψ</mi></math></span> at most <span><math><mrow><mi>Δ</mi><mrow><mo>(</mo><mi>ψ</mi><mo>)</mo></mrow></mrow></math></span> times.</div><div>Next, we use <span><math><mi>d</mi></math></span>-pathwidth to obtain lower bounds for monotone branching programs. In particular, we consider the monotone version of syntactic nondeterministic read <span><math><mi>d</mi></math></span> times branching programs (just forbidding negative literals as edge labels) and introduce a further restriction that each computational path can be partitioned into at most <span><math><mi>d</mi></math></span> read-once subpaths. We call the resulting model separable monotone read <span><math><mi>d</mi></math></span> times branching programs and abbreviate them <span><math><mi>d</mi></math></span>-SMNBPs. For each graph <span><math><mi>G</mi></math></span> without isolated vertices, we introduce a CNF <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> whose clauses are <span><math><mrow><mo>(</mo><mi>u</mi><mo>∨</mo><mi>e</mi><mo>∨</mo><mi>v</mi><mo>)</mo></mrow></math></span> for each edge <span><math><mrow><mi>e</mi><mo>=</mo><mrow><mo>{</mo><mi>u</mi><mo>,</mo><mi>v</mi><mo>}</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span>. We prove that a <span><math><mi>d</mi></math></span>-SMNBP representing <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is of size at least <span><math><mrow><mi>Ω</mi><mrow><mo>(</mo><msup><mrow><mi>c</mi></mrow><mrow><mi>p</mi><msub><mrow><mi>w</mi></mrow><mrow><mi>d</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></msup><mo>)</mo></mrow></mrow></math></span> where <span><math><mrow><mi>c</mi><mo>=</mo><msup><mrow><mrow><mo>(</mo><mn>8</mn><mo>/</mo><mn>7</mn><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>12</mn></mrow></msup></mrow></math></span>. We use this ’generic’ lower bound to obtain an exponential lower bound for a ’concrete’ class of CNFs <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>. In particular, we demonstrate that for each <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>a</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>, the size of <span><math><msup><mrow><mi>n</mi></mrow><mrow><mi>a</mi></mrow></msup></math></span>-SMNBP representing <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> is at least <span><math><msup><mrow><mi>c</mi></mrow><mrow><msup><mrow><mi>n</mi></mrow><mrow><mi>b</mi></mrow></msup></mrow></msup></math></span> where <span><math><mi>b</mi></math></span> is an arbitrary constant such that <span><math><mrow><mi>a</mi><mo>+</mo><mi>b</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>. This lower bound is tight in the sense <span><math><mrow><mi>ψ</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> can be represented by a poly-sized <span><math><mi>n</mi></math></span>-SMNBP.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"360 \",\"pages\":\"Pages 366-381\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24004189\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004189","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们研究了代表有界树宽 CNF 的有界重复句法分支程序。为此,我们引入了两个新的结构图参数 d-pathwidth 和保簇 d-pathwidth,分别用 pwd(G) 和 cpwd(G) 表示,其中 G 是一个图。我们证明 cpw2(G)≤O(tw(G)Δ(G)) 其中 tw(G) 和 Δ(G) 分别是 G 的树宽和最大度数。利用这一上限,我们证明了每个 CNF ψ 都可以表示为两个大小为 2O(Δ(ψ)⋅tw(ψ)2) 的 OBDDs(相当有限的一类读两次分支程序)的连接,其中 tw(ψ) 是 ψ 的基元图的树宽,每个变量在 ψ 中出现的次数最多为 Δ(ψ)。接下来,我们使用 d 路径宽度来获得单调分支程序的下界。具体来说,我们考虑了语法非确定性读取 d 次分支程序的单调版本(只是禁止负字面作为边标签),并引入了进一步的限制条件,即每条计算路径最多可以划分为 d 个只读一次的子路径。我们将由此产生的模型称为可分离单调读取 d 次分支程序,并简称为 d-SMNBPs。对于每个没有孤立顶点的图 G,我们引入一个 CNF ψ(G),对于 G 的每条边 e={u,v},其分句为 (u∨e∨v)。我们将证明表示 ψ(G)的 d-SMNBP 大小至少为 Ω(cpwd(G)) ,其中 c=(8/7)1/12 。我们利用这个 "通用 "下界,为一类 "具体 "的 CNF ψ(Kn)求得指数下界。我们特别证明,对于每个 0<a<1,表示 ψ(Kn)的 na-SMNBP 的大小至少为 cnb,其中 b 是一个任意常数,使得 a+b<1。从 ψ(Kn)可以用一个多元大小的 n-SMNBP 表示的意义上讲,这个下界是严密的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The splitting power of branching programs of bounded repetition and CNFs of bounded width
In this paper we study syntactic branching programs of bounded repetition representing CNFs of bounded treewidth. For this purpose we introduce two new structural graph parameters d-pathwidth and clique preserving d-pathwidth denoted by pwd(G) and cpwd(G) where G is a graph. We show that cpw2(G)O(tw(G)Δ(G)) where tw(G) and Δ(G) are, respectively the treewidth and maximal degree of G. Using this upper bound, we demonstrate that each CNF ψ can be represented as a conjunction of two OBDDs (quite a restricted class of read-twice branching programs) of size 2O(Δ(ψ)tw(ψ)2) where tw(ψ) is the treewidth of the primal graph of ψ and each variable occurs in ψ at most Δ(ψ) times.
Next, we use d-pathwidth to obtain lower bounds for monotone branching programs. In particular, we consider the monotone version of syntactic nondeterministic read d times branching programs (just forbidding negative literals as edge labels) and introduce a further restriction that each computational path can be partitioned into at most d read-once subpaths. We call the resulting model separable monotone read d times branching programs and abbreviate them d-SMNBPs. For each graph G without isolated vertices, we introduce a CNF ψ(G) whose clauses are (uev) for each edge e={u,v} of G. We prove that a d-SMNBP representing ψ(G) is of size at least Ω(cpwd(G)) where c=(8/7)1/12. We use this ’generic’ lower bound to obtain an exponential lower bound for a ’concrete’ class of CNFs ψ(Kn). In particular, we demonstrate that for each 0<a<1, the size of na-SMNBP representing ψ(Kn) is at least cnb where b is an arbitrary constant such that a+b<1. This lower bound is tight in the sense ψ(Kn) can be represented by a poly-sized n-SMNBP.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信