序列饱和度

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Anand , Jesse Geneson , Suchir Kaustav , Shen-Fu Tsai
{"title":"序列饱和度","authors":"Anand ,&nbsp;Jesse Geneson ,&nbsp;Suchir Kaustav ,&nbsp;Shen-Fu Tsai","doi":"10.1016/j.dam.2024.09.034","DOIUrl":null,"url":null,"abstract":"<div><div>In this paper, we introduce saturation and semisaturation functions of sequences, and we prove a number of fundamental results about these functions. Given a forbidden sequence <span><math><mi>u</mi></math></span> with <span><math><mi>r</mi></math></span> distinct letters, we say that a sequence <span><math><mi>s</mi></math></span> on a given alphabet is <span><math><mi>u</mi></math></span>-saturated if <span><math><mi>s</mi></math></span> is <span><math><mi>r</mi></math></span>-sparse, <span><math><mi>u</mi></math></span>-free, and adding any letter from the alphabet to an arbitrary position in <span><math><mi>s</mi></math></span> violates <span><math><mi>r</mi></math></span>-sparsity or induces a copy of <span><math><mi>u</mi></math></span>. We say that <span><math><mi>s</mi></math></span> is <span><math><mi>u</mi></math></span>-semisaturated if <span><math><mi>s</mi></math></span> is <span><math><mi>r</mi></math></span>-sparse and adding any letter from the alphabet to <span><math><mi>s</mi></math></span> violates <span><math><mi>r</mi></math></span>-sparsity or induces a new copy of <span><math><mi>u</mi></math></span>. Let the saturation function <span><math><mrow><mo>Sat</mo><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> denote the minimum possible length of a <span><math><mi>u</mi></math></span>-saturated sequence on an alphabet of size <span><math><mi>n</mi></math></span>, and let the semisaturation function <span><math><mrow><mo>Ssat</mo><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> denote the minimum possible length of a <span><math><mi>u</mi></math></span>-semisaturated sequence on an alphabet of size <span><math><mi>n</mi></math></span>. For alternating sequences, we determine both the saturation function and the semisaturation function up to a constant multiplicative factor. We show for every sequence that the semisaturation function is always either <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>Θ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. For the saturation function, we show that every sequence <span><math><mi>u</mi></math></span> has either <span><math><mrow><mo>Sat</mo><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi></mrow></math></span> or <span><math><mrow><mo>Sat</mo><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. For every sequence with 2 distinct letters, we show that the saturation function is always either <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>Θ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"360 ","pages":"Pages 382-393"},"PeriodicalIF":1.0000,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sequence saturation\",\"authors\":\"Anand ,&nbsp;Jesse Geneson ,&nbsp;Suchir Kaustav ,&nbsp;Shen-Fu Tsai\",\"doi\":\"10.1016/j.dam.2024.09.034\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this paper, we introduce saturation and semisaturation functions of sequences, and we prove a number of fundamental results about these functions. Given a forbidden sequence <span><math><mi>u</mi></math></span> with <span><math><mi>r</mi></math></span> distinct letters, we say that a sequence <span><math><mi>s</mi></math></span> on a given alphabet is <span><math><mi>u</mi></math></span>-saturated if <span><math><mi>s</mi></math></span> is <span><math><mi>r</mi></math></span>-sparse, <span><math><mi>u</mi></math></span>-free, and adding any letter from the alphabet to an arbitrary position in <span><math><mi>s</mi></math></span> violates <span><math><mi>r</mi></math></span>-sparsity or induces a copy of <span><math><mi>u</mi></math></span>. We say that <span><math><mi>s</mi></math></span> is <span><math><mi>u</mi></math></span>-semisaturated if <span><math><mi>s</mi></math></span> is <span><math><mi>r</mi></math></span>-sparse and adding any letter from the alphabet to <span><math><mi>s</mi></math></span> violates <span><math><mi>r</mi></math></span>-sparsity or induces a new copy of <span><math><mi>u</mi></math></span>. Let the saturation function <span><math><mrow><mo>Sat</mo><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> denote the minimum possible length of a <span><math><mi>u</mi></math></span>-saturated sequence on an alphabet of size <span><math><mi>n</mi></math></span>, and let the semisaturation function <span><math><mrow><mo>Ssat</mo><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> denote the minimum possible length of a <span><math><mi>u</mi></math></span>-semisaturated sequence on an alphabet of size <span><math><mi>n</mi></math></span>. For alternating sequences, we determine both the saturation function and the semisaturation function up to a constant multiplicative factor. We show for every sequence that the semisaturation function is always either <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>Θ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>. For the saturation function, we show that every sequence <span><math><mi>u</mi></math></span> has either <span><math><mrow><mo>Sat</mo><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow><mo>≥</mo><mi>n</mi></mrow></math></span> or <span><math><mrow><mo>Sat</mo><mrow><mo>(</mo><mi>u</mi><mo>,</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. For every sequence with 2 distinct letters, we show that the saturation function is always either <span><math><mrow><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>Θ</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"360 \",\"pages\":\"Pages 382-393\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-10-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24004244\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004244","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们介绍了序列的饱和函数和半饱和函数,并证明了有关这些函数的一些基本结果。给定一个包含 r 个不同字母的禁止序列 u,如果 s 是 r-稀疏的、无 u 的,并且在 s 的任意位置添加字母表中的任意一个字母都会违反 r-稀疏性或诱导出 u 的副本,我们就说给定字母表上的序列 s 是 u 饱和的;如果 s 是 r-稀疏的,并且在 s 中添加字母表中的任意一个字母都会违反 r-稀疏性或诱导出 u 的新副本,我们就说 s 是 u 半饱和的。让饱和函数 Sat(u,n) 表示大小为 n 的字母表上 u 饱和序列的最小可能长度,让半饱和函数 Ssat(u,n) 表示大小为 n 的字母表上 u 半饱和序列的最小可能长度。我们证明,对于每个序列,半饱和函数总是 O(1) 或 Θ(n)。对于饱和函数,我们证明每个序列 u 要么 Sat(u,n)≥n 要么 Sat(u,n)=O(1)。对于每个有 2 个不同字母的序列,我们证明饱和函数总是 O(1) 或 Θ(n)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sequence saturation
In this paper, we introduce saturation and semisaturation functions of sequences, and we prove a number of fundamental results about these functions. Given a forbidden sequence u with r distinct letters, we say that a sequence s on a given alphabet is u-saturated if s is r-sparse, u-free, and adding any letter from the alphabet to an arbitrary position in s violates r-sparsity or induces a copy of u. We say that s is u-semisaturated if s is r-sparse and adding any letter from the alphabet to s violates r-sparsity or induces a new copy of u. Let the saturation function Sat(u,n) denote the minimum possible length of a u-saturated sequence on an alphabet of size n, and let the semisaturation function Ssat(u,n) denote the minimum possible length of a u-semisaturated sequence on an alphabet of size n. For alternating sequences, we determine both the saturation function and the semisaturation function up to a constant multiplicative factor. We show for every sequence that the semisaturation function is always either O(1) or Θ(n). For the saturation function, we show that every sequence u has either Sat(u,n)n or Sat(u,n)=O(1). For every sequence with 2 distinct letters, we show that the saturation function is always either O(1) or Θ(n).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信