Musaab.A.A. Mohammed , Norbert P. Szabó , Péter Szűcs
{"title":"利用基于全局优化的回归方法辅助半监督深度神经网络,从有线测井记录中稳健地估算水文地质参数","authors":"Musaab.A.A. Mohammed , Norbert P. Szabó , Péter Szűcs","doi":"10.1016/j.gsd.2024.101348","DOIUrl":null,"url":null,"abstract":"<div><div>Understanding the distribution of hydrogeological properties of the aquifers is crucial for sustainable groundwater resource development. This research explores the application of deep autoencoder neural networks (AE-NN), assisted with global optimization methods for estimating hydrogeological parameters in the Quaternary aquifer system in the Debrecen area, Hungary. Traditional methods for estimating aquifer parameters typically depend on field experiments and laboratory analyses, which are both costly and time-consuming, and often fail to account for the heterogeneity of groundwater formations. In this study, deep AE-NN models are trained to extract latent space (LS) representations that capture key features from the available well logs, including spontaneous potential (SP), natural gamma ray (NGR), shallow resistivity (RS), and deep resistivity (RD). The LS log is then correlated with shale volume and hydraulic conductivity, as determined by the Larionov and Csókás methods, respectively. Regression analysis revealed a Gaussian relationship between the LS log and shale volume and a negative nonlinear relationship with hydraulic conductivity. Global optimization methods, including simulated annealing (SA) and particle swarm optimization (PSO), were used to refine the regression parameters, enhancing the predictive capabilities of the models. The results demonstrated that AE-NN assisted with global optimization methods can be effectively used to estimate shale volume and hydraulic conductivity, proposing a novel and independent approach for estimating hydrogeological parameters critical to groundwater flow and contaminant transport modeling.</div></div>","PeriodicalId":37879,"journal":{"name":"Groundwater for Sustainable Development","volume":"27 ","pages":"Article 101348"},"PeriodicalIF":4.9000,"publicationDate":"2024-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Robust estimation of hydrogeological parameters from wireline logs usingsemi-supervised deep neural networks assisted with global optimization-based regression methods\",\"authors\":\"Musaab.A.A. Mohammed , Norbert P. Szabó , Péter Szűcs\",\"doi\":\"10.1016/j.gsd.2024.101348\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Understanding the distribution of hydrogeological properties of the aquifers is crucial for sustainable groundwater resource development. This research explores the application of deep autoencoder neural networks (AE-NN), assisted with global optimization methods for estimating hydrogeological parameters in the Quaternary aquifer system in the Debrecen area, Hungary. Traditional methods for estimating aquifer parameters typically depend on field experiments and laboratory analyses, which are both costly and time-consuming, and often fail to account for the heterogeneity of groundwater formations. In this study, deep AE-NN models are trained to extract latent space (LS) representations that capture key features from the available well logs, including spontaneous potential (SP), natural gamma ray (NGR), shallow resistivity (RS), and deep resistivity (RD). The LS log is then correlated with shale volume and hydraulic conductivity, as determined by the Larionov and Csókás methods, respectively. Regression analysis revealed a Gaussian relationship between the LS log and shale volume and a negative nonlinear relationship with hydraulic conductivity. Global optimization methods, including simulated annealing (SA) and particle swarm optimization (PSO), were used to refine the regression parameters, enhancing the predictive capabilities of the models. The results demonstrated that AE-NN assisted with global optimization methods can be effectively used to estimate shale volume and hydraulic conductivity, proposing a novel and independent approach for estimating hydrogeological parameters critical to groundwater flow and contaminant transport modeling.</div></div>\",\"PeriodicalId\":37879,\"journal\":{\"name\":\"Groundwater for Sustainable Development\",\"volume\":\"27 \",\"pages\":\"Article 101348\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-09-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Groundwater for Sustainable Development\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352801X24002716\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groundwater for Sustainable Development","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352801X24002716","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Robust estimation of hydrogeological parameters from wireline logs usingsemi-supervised deep neural networks assisted with global optimization-based regression methods
Understanding the distribution of hydrogeological properties of the aquifers is crucial for sustainable groundwater resource development. This research explores the application of deep autoencoder neural networks (AE-NN), assisted with global optimization methods for estimating hydrogeological parameters in the Quaternary aquifer system in the Debrecen area, Hungary. Traditional methods for estimating aquifer parameters typically depend on field experiments and laboratory analyses, which are both costly and time-consuming, and often fail to account for the heterogeneity of groundwater formations. In this study, deep AE-NN models are trained to extract latent space (LS) representations that capture key features from the available well logs, including spontaneous potential (SP), natural gamma ray (NGR), shallow resistivity (RS), and deep resistivity (RD). The LS log is then correlated with shale volume and hydraulic conductivity, as determined by the Larionov and Csókás methods, respectively. Regression analysis revealed a Gaussian relationship between the LS log and shale volume and a negative nonlinear relationship with hydraulic conductivity. Global optimization methods, including simulated annealing (SA) and particle swarm optimization (PSO), were used to refine the regression parameters, enhancing the predictive capabilities of the models. The results demonstrated that AE-NN assisted with global optimization methods can be effectively used to estimate shale volume and hydraulic conductivity, proposing a novel and independent approach for estimating hydrogeological parameters critical to groundwater flow and contaminant transport modeling.
期刊介绍:
Groundwater for Sustainable Development is directed to different stakeholders and professionals, including government and non-governmental organizations, international funding agencies, universities, public water institutions, public health and other public/private sector professionals, and other relevant institutions. It is aimed at professionals, academics and students in the fields of disciplines such as: groundwater and its connection to surface hydrology and environment, soil sciences, engineering, ecology, microbiology, atmospheric sciences, analytical chemistry, hydro-engineering, water technology, environmental ethics, economics, public health, policy, as well as social sciences, legal disciplines, or any other area connected with water issues. The objectives of this journal are to facilitate: • The improvement of effective and sustainable management of water resources across the globe. • The improvement of human access to groundwater resources in adequate quantity and good quality. • The meeting of the increasing demand for drinking and irrigation water needed for food security to contribute to a social and economically sound human development. • The creation of a global inter- and multidisciplinary platform and forum to improve our understanding of groundwater resources and to advocate their effective and sustainable management and protection against contamination. • Interdisciplinary information exchange and to stimulate scientific research in the fields of groundwater related sciences and social and health sciences required to achieve the United Nations Millennium Development Goals for sustainable development.