Avijit Ghosh , Nondon Lal Dey , Nasser S. Awwad , Abul Kashem Mohammad Yahia , Mohammad Shahjalal , Hala A. Ibrahium
{"title":"利用 DFT 和 SCAPS-1D 研究 Sr3AsBr3 包晶在拉伸和压缩应变下的电子、结构、光学和光伏性能","authors":"Avijit Ghosh , Nondon Lal Dey , Nasser S. Awwad , Abul Kashem Mohammad Yahia , Mohammad Shahjalal , Hala A. Ibrahium","doi":"10.1016/j.surfin.2024.105195","DOIUrl":null,"url":null,"abstract":"<div><div>A significant amount of interest in the field of solar energy has recently been generated by the remarkable optical, structural, and electronic attributes of inorganic perovskite-based substances. A thorough investigation was conducted on how tensile along with compressive strains influence the electronic and optical properties of halide perovskite Sr<sub>3</sub>AsBr<sub>3</sub>, utilizing FP-DFT. The PBE functional is used to determine the direct bandgap of 1.512 eV for unstrained Sr<sub>3</sub>AsBr<sub>3</sub> at the Γ position. The bandgap redshifts (1.216 eV at -4 % strain) under compressive strain and slightly increases (1.728 eV at +4 % strain) under tensile tension, causing the absorption coefficient to blueshift. The optical properties, including the functions of dielectric, electron energy loss function, and absorption coefficient, all indicate a considerable capacity for absorption in the area of the visible spectrum, and the band characteristics of this component agree with these qualities. We used Sr<sub>3</sub>AsBr<sub>3</sub> absorbers and CdS electron transport layers (ETL) with different thicknesses, defect densities, and doping concentrations to study solar power capabilities using the SCAPS-1D simulator. The most effective arrangement (at -4 % strain) had a fill factor (FF) of 86.76 %, a short-circuit current density (J<sub>SC</sub>) of 37.5593 mAcm<sup>−2</sup>, an open-circuit voltage (V<sub>OC</sub>) of 0.8712 V, and a power conversion efficiency (PCE) of 28.39 %. Our findings support additional research into Sr<sub>3</sub>AsBr<sub>3</sub>, a promising perovskite for optoelectronic uses.</div></div>","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":null,"pages":null},"PeriodicalIF":8.3000,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining the electronic, structural, optical, and photovoltaic capabilities of Sr3AsBr3 perovskite under tensile and compressive strains with DFT and SCAPS-1D\",\"authors\":\"Avijit Ghosh , Nondon Lal Dey , Nasser S. Awwad , Abul Kashem Mohammad Yahia , Mohammad Shahjalal , Hala A. Ibrahium\",\"doi\":\"10.1016/j.surfin.2024.105195\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A significant amount of interest in the field of solar energy has recently been generated by the remarkable optical, structural, and electronic attributes of inorganic perovskite-based substances. A thorough investigation was conducted on how tensile along with compressive strains influence the electronic and optical properties of halide perovskite Sr<sub>3</sub>AsBr<sub>3</sub>, utilizing FP-DFT. The PBE functional is used to determine the direct bandgap of 1.512 eV for unstrained Sr<sub>3</sub>AsBr<sub>3</sub> at the Γ position. The bandgap redshifts (1.216 eV at -4 % strain) under compressive strain and slightly increases (1.728 eV at +4 % strain) under tensile tension, causing the absorption coefficient to blueshift. The optical properties, including the functions of dielectric, electron energy loss function, and absorption coefficient, all indicate a considerable capacity for absorption in the area of the visible spectrum, and the band characteristics of this component agree with these qualities. We used Sr<sub>3</sub>AsBr<sub>3</sub> absorbers and CdS electron transport layers (ETL) with different thicknesses, defect densities, and doping concentrations to study solar power capabilities using the SCAPS-1D simulator. The most effective arrangement (at -4 % strain) had a fill factor (FF) of 86.76 %, a short-circuit current density (J<sub>SC</sub>) of 37.5593 mAcm<sup>−2</sup>, an open-circuit voltage (V<sub>OC</sub>) of 0.8712 V, and a power conversion efficiency (PCE) of 28.39 %. Our findings support additional research into Sr<sub>3</sub>AsBr<sub>3</sub>, a promising perovskite for optoelectronic uses.</div></div>\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":8.3000,\"publicationDate\":\"2024-09-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2468023024013518\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2468023024013518","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Examining the electronic, structural, optical, and photovoltaic capabilities of Sr3AsBr3 perovskite under tensile and compressive strains with DFT and SCAPS-1D
A significant amount of interest in the field of solar energy has recently been generated by the remarkable optical, structural, and electronic attributes of inorganic perovskite-based substances. A thorough investigation was conducted on how tensile along with compressive strains influence the electronic and optical properties of halide perovskite Sr3AsBr3, utilizing FP-DFT. The PBE functional is used to determine the direct bandgap of 1.512 eV for unstrained Sr3AsBr3 at the Γ position. The bandgap redshifts (1.216 eV at -4 % strain) under compressive strain and slightly increases (1.728 eV at +4 % strain) under tensile tension, causing the absorption coefficient to blueshift. The optical properties, including the functions of dielectric, electron energy loss function, and absorption coefficient, all indicate a considerable capacity for absorption in the area of the visible spectrum, and the band characteristics of this component agree with these qualities. We used Sr3AsBr3 absorbers and CdS electron transport layers (ETL) with different thicknesses, defect densities, and doping concentrations to study solar power capabilities using the SCAPS-1D simulator. The most effective arrangement (at -4 % strain) had a fill factor (FF) of 86.76 %, a short-circuit current density (JSC) of 37.5593 mAcm−2, an open-circuit voltage (VOC) of 0.8712 V, and a power conversion efficiency (PCE) of 28.39 %. Our findings support additional research into Sr3AsBr3, a promising perovskite for optoelectronic uses.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.