使用马尔可夫毛毯的包装特征选择方法

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Atif Hassan , Jiaul Hoque Paik , Swanand Ravindra Khare , Syed Asif Hassan
{"title":"使用马尔可夫毛毯的包装特征选择方法","authors":"Atif Hassan ,&nbsp;Jiaul Hoque Paik ,&nbsp;Swanand Ravindra Khare ,&nbsp;Syed Asif Hassan","doi":"10.1016/j.patcog.2024.111069","DOIUrl":null,"url":null,"abstract":"<div><div>In feature selection, Markov Blanket (MB) based approaches have attracted considerable attention with most MB discovery algorithms being categorized as filter based techniques. Typically, the Conditional Independence (CI) test employed by such methods is different for different data types. In this article, we propose a novel Markov Blanket based wrapper feature selection method. The proposed approach employs Predictive Permutation Independence (PPI), a novel Conditional Independence (CI) test that allows it to work out-of-the-box for both classification and regression tasks on mixed data. PPI can work with any supervised algorithm to estimate the association of a feature with the target variable while also providing a measure of feature importance. The proposed approach also includes an optional MB aggregation step that can be used to find the optimal MB under non-faithful conditions. Our method<span><span><sup>1</sup></span></span> outperforms other MB discovery methods, in terms of F1-score, by 7% on average, over 3 large-scale BN datasets. It also outperforms state-of-the-art feature selection techniques on 13 real-world datasets.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"158 ","pages":"Article 111069"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A wrapper feature selection approach using Markov blankets\",\"authors\":\"Atif Hassan ,&nbsp;Jiaul Hoque Paik ,&nbsp;Swanand Ravindra Khare ,&nbsp;Syed Asif Hassan\",\"doi\":\"10.1016/j.patcog.2024.111069\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In feature selection, Markov Blanket (MB) based approaches have attracted considerable attention with most MB discovery algorithms being categorized as filter based techniques. Typically, the Conditional Independence (CI) test employed by such methods is different for different data types. In this article, we propose a novel Markov Blanket based wrapper feature selection method. The proposed approach employs Predictive Permutation Independence (PPI), a novel Conditional Independence (CI) test that allows it to work out-of-the-box for both classification and regression tasks on mixed data. PPI can work with any supervised algorithm to estimate the association of a feature with the target variable while also providing a measure of feature importance. The proposed approach also includes an optional MB aggregation step that can be used to find the optimal MB under non-faithful conditions. Our method<span><span><sup>1</sup></span></span> outperforms other MB discovery methods, in terms of F1-score, by 7% on average, over 3 large-scale BN datasets. It also outperforms state-of-the-art feature selection techniques on 13 real-world datasets.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"158 \",\"pages\":\"Article 111069\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320324008203\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324008203","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

在特征选择方面,基于马尔可夫空白(MB)的方法引起了广泛关注,大多数基于马尔可夫空白的发现算法都被归类为基于过滤的技术。通常情况下,这些方法所采用的条件独立性(CI)测试对于不同的数据类型是不同的。在本文中,我们提出了一种新颖的基于马尔可夫空白的包装特征选择方法。所提出的方法采用了一种新颖的条件独立性(CI)测试方法--预测迭代独立性(PPI),使其能够在混合数据的分类和回归任务中开箱即用。PPI 可以与任何监督算法配合使用,以估计特征与目标变量的关联性,同时还能提供特征重要性的度量。所提出的方法还包括一个可选的 MB 聚合步骤,可用于在非忠实条件下找到最佳 MB。在 3 个大规模 BN 数据集上,我们的方法1 在 F1 分数上平均比其他 MB 发现方法高出 7%。在 13 个真实世界数据集上,它的表现也优于最先进的特征选择技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A wrapper feature selection approach using Markov blankets
In feature selection, Markov Blanket (MB) based approaches have attracted considerable attention with most MB discovery algorithms being categorized as filter based techniques. Typically, the Conditional Independence (CI) test employed by such methods is different for different data types. In this article, we propose a novel Markov Blanket based wrapper feature selection method. The proposed approach employs Predictive Permutation Independence (PPI), a novel Conditional Independence (CI) test that allows it to work out-of-the-box for both classification and regression tasks on mixed data. PPI can work with any supervised algorithm to estimate the association of a feature with the target variable while also providing a measure of feature importance. The proposed approach also includes an optional MB aggregation step that can be used to find the optimal MB under non-faithful conditions. Our method1 outperforms other MB discovery methods, in terms of F1-score, by 7% on average, over 3 large-scale BN datasets. It also outperforms state-of-the-art feature selection techniques on 13 real-world datasets.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信