Yudong Liang , Shaoji Li , De Cheng , Wenjian Wang , Deyu Li , Jiye Liang
{"title":"通过自监督深度引导进行图像去毛刺","authors":"Yudong Liang , Shaoji Li , De Cheng , Wenjian Wang , Deyu Li , Jiye Liang","doi":"10.1016/j.patcog.2024.111051","DOIUrl":null,"url":null,"abstract":"<div><div>Self-supervised learning methods have demonstrated promising benefits to feature representation learning for image dehazing tasks, especially for avoiding the laborious work of collecting hazy-clean image pairs, while also enabling better generalization abilities of the model. Despite the long-standing interests in depth estimation for image dehazing tasks, few works have fully explored the interactions between depth and dehazing tasks in an unsupervised manner. In this paper, a self-supervised image dehazing framework under the guidance of self-supervised depth estimation has been proposed, to fully exploit the interactions between depth and hazes for image dehazing. Specifically, the hazy image and the corresponding depth estimation are generated and optimized from the clear image in a dual-network self-supervised manner. The correlations between depth and hazy images are exploited in depth-guided hybrid attention Transformer blocks, which adaptively leverage both the cross-attention and self-attention to effectively model hazy densities via cross-modality fusion and capture global context information for better feature representations. In addition, the depth estimations of hazy images are further explored for the detection tasks on hazy images. Extensive experiments demonstrate that the depth estimation not only enhances the model generalization ability across different dehazing datasets, leading to state-of-the-art self-supervised dehazing performance, but also benefits downstream detection tasks on hazy images. Our code is available at <span><span>https://github.com/DongLiangSXU/Depth-Guidance-dehazing.git</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"158 ","pages":"Article 111051"},"PeriodicalIF":7.5000,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image dehazing via self-supervised depth guidance\",\"authors\":\"Yudong Liang , Shaoji Li , De Cheng , Wenjian Wang , Deyu Li , Jiye Liang\",\"doi\":\"10.1016/j.patcog.2024.111051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Self-supervised learning methods have demonstrated promising benefits to feature representation learning for image dehazing tasks, especially for avoiding the laborious work of collecting hazy-clean image pairs, while also enabling better generalization abilities of the model. Despite the long-standing interests in depth estimation for image dehazing tasks, few works have fully explored the interactions between depth and dehazing tasks in an unsupervised manner. In this paper, a self-supervised image dehazing framework under the guidance of self-supervised depth estimation has been proposed, to fully exploit the interactions between depth and hazes for image dehazing. Specifically, the hazy image and the corresponding depth estimation are generated and optimized from the clear image in a dual-network self-supervised manner. The correlations between depth and hazy images are exploited in depth-guided hybrid attention Transformer blocks, which adaptively leverage both the cross-attention and self-attention to effectively model hazy densities via cross-modality fusion and capture global context information for better feature representations. In addition, the depth estimations of hazy images are further explored for the detection tasks on hazy images. Extensive experiments demonstrate that the depth estimation not only enhances the model generalization ability across different dehazing datasets, leading to state-of-the-art self-supervised dehazing performance, but also benefits downstream detection tasks on hazy images. Our code is available at <span><span>https://github.com/DongLiangSXU/Depth-Guidance-dehazing.git</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"158 \",\"pages\":\"Article 111051\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-09-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320324008021\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324008021","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Self-supervised learning methods have demonstrated promising benefits to feature representation learning for image dehazing tasks, especially for avoiding the laborious work of collecting hazy-clean image pairs, while also enabling better generalization abilities of the model. Despite the long-standing interests in depth estimation for image dehazing tasks, few works have fully explored the interactions between depth and dehazing tasks in an unsupervised manner. In this paper, a self-supervised image dehazing framework under the guidance of self-supervised depth estimation has been proposed, to fully exploit the interactions between depth and hazes for image dehazing. Specifically, the hazy image and the corresponding depth estimation are generated and optimized from the clear image in a dual-network self-supervised manner. The correlations between depth and hazy images are exploited in depth-guided hybrid attention Transformer blocks, which adaptively leverage both the cross-attention and self-attention to effectively model hazy densities via cross-modality fusion and capture global context information for better feature representations. In addition, the depth estimations of hazy images are further explored for the detection tasks on hazy images. Extensive experiments demonstrate that the depth estimation not only enhances the model generalization ability across different dehazing datasets, leading to state-of-the-art self-supervised dehazing performance, but also benefits downstream detection tasks on hazy images. Our code is available at https://github.com/DongLiangSXU/Depth-Guidance-dehazing.git.
期刊介绍:
The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.