优化放射学图像检索系统的语义感知表征学习

IF 7.5 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zografoula Vagena , Xiaoyang Wei , Camille Kurtz , Florence Cloppet
{"title":"优化放射学图像检索系统的语义感知表征学习","authors":"Zografoula Vagena ,&nbsp;Xiaoyang Wei ,&nbsp;Camille Kurtz ,&nbsp;Florence Cloppet","doi":"10.1016/j.patcog.2024.111060","DOIUrl":null,"url":null,"abstract":"<div><div>Content-based image retrieval (CBIR), which consists of ranking a set of images with respect to a query image based on visual similarity, can assist diagnostic radiologists in assessing medical images, by identifying similar digital images in large image databases. Despite the many recent advances and innovations in CBIR for general images, their adoption in radiology has been slow and limited. In the current paper we attempt to close the gap between the two domains and wisely adapt modern CBIR techniques to radiology images: by extending the latest representation learning techniques in a way that can overcome the unique challenges and at the same time take advantage of the specific opportunities that are present in radiology we were able to come up with novel and effective medical image retrieval methods. Our method achieves the highest CUI@5 scores (18.48, 15.95) on two widely used datasets (ROCO and MEDICAT respectively), showcasing the superiority of the proposed method in comparison with state-of-the-art relevant alternatives.</div></div>","PeriodicalId":49713,"journal":{"name":"Pattern Recognition","volume":"158 ","pages":"Article 111060"},"PeriodicalIF":7.5000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Semantic aware representation learning for optimizing image retrieval systems in radiology\",\"authors\":\"Zografoula Vagena ,&nbsp;Xiaoyang Wei ,&nbsp;Camille Kurtz ,&nbsp;Florence Cloppet\",\"doi\":\"10.1016/j.patcog.2024.111060\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Content-based image retrieval (CBIR), which consists of ranking a set of images with respect to a query image based on visual similarity, can assist diagnostic radiologists in assessing medical images, by identifying similar digital images in large image databases. Despite the many recent advances and innovations in CBIR for general images, their adoption in radiology has been slow and limited. In the current paper we attempt to close the gap between the two domains and wisely adapt modern CBIR techniques to radiology images: by extending the latest representation learning techniques in a way that can overcome the unique challenges and at the same time take advantage of the specific opportunities that are present in radiology we were able to come up with novel and effective medical image retrieval methods. Our method achieves the highest CUI@5 scores (18.48, 15.95) on two widely used datasets (ROCO and MEDICAT respectively), showcasing the superiority of the proposed method in comparison with state-of-the-art relevant alternatives.</div></div>\",\"PeriodicalId\":49713,\"journal\":{\"name\":\"Pattern Recognition\",\"volume\":\"158 \",\"pages\":\"Article 111060\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pattern Recognition\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0031320324008112\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031320324008112","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

基于内容的图像检索(CBIR)包括根据视觉相似性对一组图像与查询图像进行排序,通过识别大型图像数据库中的相似数字图像,可以帮助放射诊断医师评估医学图像。尽管最近在普通图像的 CBIR 方面取得了许多进展和创新,但它们在放射学中的应用却十分缓慢和有限。在本文中,我们试图缩小这两个领域之间的差距,并明智地将现代 CBIR 技术应用于放射学图像:通过扩展最新的表示学习技术,我们能够克服独特的挑战,同时利用放射学中存在的特殊机遇,提出新颖而有效的医学图像检索方法。我们的方法在两个广泛使用的数据集(分别为 ROCO 和 MEDICAT)上获得了最高的 CUI@5 分数(18.48 分和 15.95 分),与最先进的相关替代方法相比,展示了所提出方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Semantic aware representation learning for optimizing image retrieval systems in radiology

Semantic aware representation learning for optimizing image retrieval systems in radiology
Content-based image retrieval (CBIR), which consists of ranking a set of images with respect to a query image based on visual similarity, can assist diagnostic radiologists in assessing medical images, by identifying similar digital images in large image databases. Despite the many recent advances and innovations in CBIR for general images, their adoption in radiology has been slow and limited. In the current paper we attempt to close the gap between the two domains and wisely adapt modern CBIR techniques to radiology images: by extending the latest representation learning techniques in a way that can overcome the unique challenges and at the same time take advantage of the specific opportunities that are present in radiology we were able to come up with novel and effective medical image retrieval methods. Our method achieves the highest CUI@5 scores (18.48, 15.95) on two widely used datasets (ROCO and MEDICAT respectively), showcasing the superiority of the proposed method in comparison with state-of-the-art relevant alternatives.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Pattern Recognition
Pattern Recognition 工程技术-工程:电子与电气
CiteScore
14.40
自引率
16.20%
发文量
683
审稿时长
5.6 months
期刊介绍: The field of Pattern Recognition is both mature and rapidly evolving, playing a crucial role in various related fields such as computer vision, image processing, text analysis, and neural networks. It closely intersects with machine learning and is being applied in emerging areas like biometrics, bioinformatics, multimedia data analysis, and data science. The journal Pattern Recognition, established half a century ago during the early days of computer science, has since grown significantly in scope and influence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信